197 research outputs found

    Information security management:ANP based approach for risk analysis and decision making

    Get PDF
    In information systems security, the objectives of risk analysis process are to help to identify new threats and vulnerabilities, to estimate their business impact and to provide a dynamic set of tools to control the security level of the information system. The identification of risk factors as well as the estimation of their business impact require tools for assessment of risk with multi-value scales according to different stakeholders' point of view. Therefore, the purpose of this paper is to model risk analysis decision making problem using semantic network to develop the decision network and the Analytical Network Process (ANP) that allows solving complex problems taking into consideration quantitative and qualitative data. As a decision support technique ANP also measures the dependency among risk factors related to the elicitation of individual judgement. An empirical study involving the Forestry Company is used to illustrate the relevance of ANP

    Influence of atmospheric vapour pressure deficit on ozone responses of snap bean (Phaseolus vulgaris L.) genotypes

    Get PDF
    Environmental conditions influence plant responses to ozone (O3), but few studies have evaluated individual factors directly. In this study, the effect of O3 at high and low atmospheric vapour pressure deficit (VPD) was evaluated in two genotypes of snap bean (Phaseolus vulgaris L.) (R123 and S156) used as O3 bioindicator plants. Plants were grown in outdoor controlled-environment chambers in charcoal-filtered air containing 0 or 60 nl l−1 O3 (12 h average) at two VPDs (1.26 and 1.96 kPa) and sampled for biomass, leaf area, daily water loss, and seed yield. VPD clearly influenced O3 effects. At low VPD, O3 reduced biomass, leaf area, and seed yield substantially in both genotypes, while at high VPD, O3 had no significant effect on these components. In clean air, high VPD reduced biomass and yield by similar fractions in both genotypes compared with low VPD. Data suggest that a stomatal response to VPD per se may be lacking in both genotypes and it is hypothesized that the high VPD resulted in unsustainable transpiration and water deficits that resulted in reduced growth and yield. High VPD- and water-stress-induced stomatal responses may have reduced the O3 flux into the leaves, which contributed to a higher yield compared to the low VPD treatment in both genotypes. At low VPD, transpiration increased in the O3 treatment relative to the clean air treatment, suggesting that whole-plant conductance was increased by O3 exposure. Ozone-related biomass reductions at low VPD were proportionally higher in S156 than in R123, indicating that differential O3 sensitivity of these bioindicator plants remained evident when environmental conditions were conducive for O3 effects. Assessments of potential O3 impacts on vegetation should incorporate interacting factors such as VPD

    The Effect of Smoking and Body Mass Index on The Complication Rate of Alloplastic Breast Reconstruction

    Get PDF
    Background and Aims: The aim of this study was to evaluate the effect of smoking and body mass index on the occurrence of complications after alloplastic breast reconstruction. Materials and Methods: A consecutive series of 56 patients treated with immediate or delayed alloplastic breast reconstruction, including six cases combined with latissimus dorsi flap, at three hospitals between 2012 and 2018 were included. Complications were scored and defined according to Clavien–Dindo. To evaluate the impact of smoking, body mass index, and other potential risk factors on the occurrence of any and severe complications, univariate and multivariate logistic regression analyses were applied to estimate odds ratios and 95% confidence intervals. Results: In 56 patients, 22 patients had a complication. As much as 46% of smokers had severe complications compared to 18% of non-smokers. Of patients with body mass index ⩾ 25, 40% had severe complications compared to 10% with body mass index < 25. Smokers had eight times more chance of developing severe complications than non-smokers (ORadjusted = 8.0, p = 0.02). Patients with body mass index ⩾ 25 had almost 10 times more severe complications compared to patients with body mass index ⩽ 25 (ORadjusted = 9.9, p = 0.009). No other risk factors were significant. Conclusion: Smoking and body mass index ⩾ 25 both increased the complication rate to such an extent that patients should be informed about their increased risk for complications following alloplastic breast reconstruction and on these grounds surgeons may delay alloplastic breast reconstruction. It is an ethical dilemma whether one should deny overweight and obese patients and those who smoke an immediate alloplastic breast reconstruction. For both life style interventions, adequate guidance should be made available

    Modélisation Numérique de la tenue mécanique des soudures laser avec aciers THR

    Get PDF
    L'allègement en masse des véhicules, reste un enjeu majeur pour les constructeurs automobiles. Une des solutions à ce problème est l'utilisation d'aciers THR (Très Haute Resistance), d'épaisseurs de nuances et de caractéristiques mécaniques souvent différentes. L'assemblage est fait par soudage. Le problème dans l'utilisation de ces aciers THR et la soudabilité et la tenue de soudure. Dans cette étude, nous nous intéresserons à la modélisation numérique de la Zone Fondue et la Zone Affectée Thermiquement , Nous allons décrire un modèle numérique qui prend en compte la micro duret

    The effect of sarcopenic obesity and muscle quality on complications after DIEP-flap breast reconstruction

    Get PDF
    Introduction: The aim of this study was to evaluate whether sarcopenic obesity and muscle quality as expressed by skeletal muscle radiodensity (SMD) are associated to postoperative complications in women undergoing DIEP-flap breast reconstruction (BR). Methods: All patients who underwent DIEP-flap BR at our tertiary center between 2010 and 2018 were asked to sign informed consent for the use of their electronic medical records and images. By outlining anatomical skeletal muscle contours on the preoperative abdominal CT-scan at lumbar level L3, SMD and skeletal muscle indices (SMI) were measured by two observers independently. Using logistic regression analyses, the association between sarcopenic obesity (BMI >25 & SMI <39), low SMD (<40HU), and Clavien-Dindo (CD) grade ≥ II complications was evaluated. In this way odds ratios (OR) and adjusted odds ratios (ORadjusted) were provided. Results: Out of the 103 patients included in this study, 36% had CD grade ≥ II complications within 30 days of surgery. Twenty patients (19%) suffered from sarcopenic obesity of whom eleven patients (55%) had CD grade ≥ II complications (OR = 2.7, p = 0.05). In a multivariate analysis, sarcopenic obesity was not significantly related to a higher complication rate (ORadjusted = 2.2, p = 0.14) but women with SMD below average and those with prior radiotherapy had a higher risk for grade ≥ II complications (ORadjusted = 2.9, p = 0.02 and ORadjusted = 2.7, p = 0.02 respectively). Conclusion: Below average SMD (<40HU) was found to be associated with the development of postoperative CD grade ≥ II complications in women undergoing DIEP-flap BR. Future research should evaluate whether improving SMD reduces the complication incidence in this patient group

    The Dexi-SH* model for a multivariate assessment of agro-ecological sustainability of dairy grazing systems

    Get PDF
    Dexi-SH* is an ex ante multivariate model for assessing the sustainability of dairy cows grazing systems. This model is composed of three sub-models that evaluate the impact of the systems on: (i) biotic resources; (ii) abiotic resources, and (iii) pollution risks. The structuring of the hierarchical tree was inspired by that of the Masc model. The choice of criteria and their aggregation modalities were discussed within a multi-disciplinary group of scientists. For each cluster, a utility function was established in order to determine weighting and priority functions between criteria. The model can take local and regional conditions and standards into account by adjusting criterion categories to the agroecological context, and the specific views of the decision makers by changing the weighting of criteria

    Non-muscle Myosin II reactivation and cytoskeletal remodelling as a new vulnerability in therapy-resistant melanoma

    Get PDF
    Trabajo presentado en el 3rd ASEICA Educational Symposium, celebrado en modalidad virtual del 23 al 25 de noviembre de 2021.MAPK-targeted therapies (MAPKi) and immune checkpoint blockers (ICB) improve survival of subsets of melanoma patients. However, therapy resistance is a persistent problem. Cross-resistance to MAPKi and ICB may be driven by common transcriptomic alterations in pathways controlling invasion and metastasis. Using phosphoproteomic and transcriptomic analyses, we find that adaptation to treatment and acquisition of resistance to MAPKi involve cytoskeletal remodelling and changes in levels in the ROCK-non-muscle Myosin II (NMII) pathway, which is essential for cancer invasion and metastasis. NMII activity is decreased shortly after MAPK is blocked. However, persister cells promptly restore NMII activity to increase survival, and this becomes a vulnerability, since survival of MAPKi- and ICB-resistant cells is highly dependent on ROCK-NMII. Efficacy of MAPKi and ICB can be improved by combination with ROCK inhibitors, which have a dual action by impairing melanoma cell survival (through induction of lethal reactive oxygen species and unresolved DNA damage) and reducing myeloid- and lymphoid-driven immunosuppression, ultimately overcoming cross-resistance in vivo. In human tumours, high ROCK-NMII levels identify MAPKi-, ICB-resistant melanomas, and treatment-naïve melanomas with worse prognosis. Therefore, a subset of MAPKi- and ICB-resistant melanomas is more susceptible to ROCK-NMII blockade, suggesting clinical opportunities for combination therapies

    The Myosin II cytoskeleton as a new vulnerability in therapy-resistant melanoma

    Get PDF
    Trabajo presentado en VIB Conference: Tumor Heterogeneity, Plasticity and Therapy, celebrado en modalidad virtual del 05 al 06 de mayo de 2021.MAPK-targeted therapies (MAPKi) and immune checkpoint blockers (ICB) improve survival of subsets of melanoma patients. However, therapy resistance is a persistent problem. Cross-resistance to MAPKi and ICB has been suggested to be driven, in part, by common transcriptomic alterations in pathways controlling invasion and metastasis. We find that adaptation to treatment and acquisition of resistance to MAPKi involve cytoskeletal remodelling and changes in expression levels in the ROCK-Myosin II pathway, which plays a key role in cancer invasion and metastasis. Myosin II activity is decreased shortly after MAPK is blocked. However, resistant cells promptly restore Myosin II activity to increase survival, and this becomes a vulnerability, since survival of MAPKi- and ICB-resistant cells is highly dependent on ROCK-Myosin II. Efficacy of MAPKi and ICB can be improved by combination with ROCK inhibitors, which have a dual action by impairing melanoma cell survival (through induction of lethal reactive oxygen species and unresolved DNA damage) and myeloid- and lymphoiddriven immunosuppression, overcoming cross-resistance. In human tumours, high ROCK-Myosin II activity and their associated transcriptome identify MAPKi-, ICBresistant melanomas, and treatment-naïve melanomas with worse prognosis. Therefore, a subset of MAPKi- and ICB-resistant melanomas is intrinsically more susceptible to ROCK-Myosin II inhibition, suggesting clinical opportunities for combination therapies

    The Myosin II cytoskeleton as a new vulnerability in therapy-resistant melanoma

    Get PDF
    Trabajo presentado en la EACR-AstraZeneca Virtual Conference ‘Drug Tolerant Persister Cells’, celebrada del 07 al 08 de diciembre de 2021.MAPK-targeted therapies (MAPKi) and immune checkpoint blockers (ICB) improve survival of subsets of melanoma patients. However, therapy resistance is a persistent problem. Cross-resistance to MAPKi and ICB may be driven by common transcriptomic alterations in pathways controlling invasion and metastasis. We find that adaptation to treatment and acquisition of resistance to MAPKi involve cytoskeletal remodelling and changes in expression levels in the ROCK-non-muscle Myosin II (NMII) pathway, which is essential for cancer invasion and metastasis. NMII activity is decreased shortly after MAPK is blocked. However, persister cells promptly restore NMII activity to increase survival, and this becomes a vulnerability, since survival of MAPKi- and ICB-resistant cells is highly dependent on ROCK-NMII. Efficacy of MAPKi and ICB can be improved by combination with ROCK inhibitors, which have a dual action by impairing melanoma cell survival (through induction of lethal reactive oxygen species and unresolved DNA damage) and reducing myeloid- and lymphoid-driven immunosuppression, ultimately overcoming cross-resistance. In human tumours, high ROCK-NMII levels identify MAPKi-, ICB-resistant melanomas, and treatment-naïve melanomas with worse prognosis. Therefore, a subset of MAPKi- and ICB-resistant melanomas is more susceptible to ROCK-NMII blockade, suggesting clinical opportunities for combination therapies

    The Myosin II cytoskeleton as a new vulnerability in therapy-resistant melanoma

    Get PDF
    Trabajo presentado en el XIX Congreso de la Sociedad Española de Biología Celular, celebrado en Boadilla del Monte (España) del 26 al 29 de octubre de 2021.MAPK-targeted therapies (MAPKi) and immune checkpoint blockers (ICB) improve survival of subsets of melanoma patients. However, therapy resistance is a persistent problem. Cross-resistance to MAPKi and ICB has been suggested to be driven, in part, by common transcriptomic alterations in pathways controlling invasion and metastasis. We find that adaptation to treatment and acquisition of resistance to MAPKi involve cytoskeletal remodelling and changes in expression levels in the ROCK-Myosin II pathway, which plays a key role in cancer invasion and metastasis. Myosin II activity is decreased shortly after MAPK is blocked. However, resistant cells promptly restore Myosin II activity to increase survival, and this becomes a vulnerability, since survival of MAPKi- and ICB-resistant cells is highly dependent on ROCK-Myosin II. Efficacy of MAPKi and ICB can be improved by combination with ROCK inhibitors, which have a dual action by impairing melanoma cell survival (through induction of lethal reactive oxygen species, unresolved DNA damage and cell cycle arrest) and myeloid- and lymphoid-driven immunosuppression, ultimately overcoming cross-resistance. In human tumours, high ROCK-Myosin II activity and their associated transcriptome identify MAPKi-, ICB-resistant melanomas, and treatment-naïve melanomas with worse prognosis. Therefore, a subset of MAPKi- and ICB-resistant melanomas is intrinsically more susceptible to ROCK-Myosin II inhibition, suggesting clinical opportunities for combination therapies
    corecore