13 research outputs found

    rBCG Induces Strong Antigen-Specific T Cell Responses in Rhesus Macaques in a Prime-Boost Setting with an Adenovirus 35 Tuberculosis Vaccine Vector

    Get PDF
    BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered intradermally) and a recombinant (rBCG) AFRO-1 expressing perfringolysin (in 6 animals) followed by two boosts (delivered intramuscullary) with non-replicating adenovirus 35 (rAd35) expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta). Control animals received diluent (3 animals). METHODS AND FINDINGS: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal) using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma), T cell proliferation was measured in CD4(+), CD8alpha/beta(+), and CD8alpha/alpha(+) T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA) using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i) increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals) one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml), ii) stronger T cell proliferation in the CD8alpha/alpha(+) T cell subset (proliferative index 17%) as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha(+) T cells). Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity. CONCLUSION: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell proliferation in the CD8alpha/alpha+ T cell subset represents a valuable marker for vaccine-take in BCG-based TB vaccine trials

    Human leukocyte antigens A*3001 and A*3002 show distinct peptide-binding Patterns of the Mycobacterium tuberculosis protein TB10.4 : consequences for immune recognition

    Get PDF
    High-tuberculosis (TB)-burden countries are located in sub-Saharan Africa. We examined the frequency of human leukocyte antigen (HLA) alleles, followed by recombinant expression of the most frequent HLA-A alleles, i.e., HLA-A*3001 and HLA-A*3002, to study differences in mycobacterial peptide presentation and CD8 T-cell recognition. We screened a peptide library (9-mer peptides with an 8-amino-acid overlap) for binding, affinity, and off-rate of the Mycobacterium tuberculosis-associated antigen TB10.4 and identified only three TB10.4 peptides with considerable binding to HLA-A*3001. In contrast, 22 peptides bound to HLA-A*3002. This reflects a marked difference in the binding preference between the two alleles, with A*3002 tolerating a more promiscuous peptide-binding pattern and A*3001 accommodating only a very selective peptide repertoire. Subsequent analysis of the affinity and off-rate of the binding peptides revealed a strong affinity (8 nM to 7 M) and moderate off-rate (20 min to 3 h) for both alleles. Construction of HLA-A*3001 and HLA-A*3002 tetramers containing selected binding peptides from TB10.4, including a peptide which was shared among both alleles, QIMYNYPAM (TB10.43–11), allowed us to enumerate epitope-specific T cells in HLA-A*3001- and HLA-A*3002-typed patients with active TB. HLA-A*3001 and HLA-A*3002 major histocompatibility complex-peptide complexes were recognized in individuals with active TB, irrespective of their homozygous HLA-A*3001 or HLA-A*3002 genetic background. The antigen-specific T cells exhibited the CD45RA CCR7 precursor phenotype and the interleukin- 7 receptor (CD127), which were different from the phenotype and receptor exhibited by the parental CD8 T-cell population

    Human Leukocyte Antigens A*3001 and A*3002 Show Distinct Peptide-Binding Patterns of the Mycobacterium tuberculosis

    No full text
    High-tuberculosis (TB)-burden countries are located in sub-Saharan Africa. We examined the frequency of human leukocyte antigen (HLA) alleles, followed by recombinant expression of the most frequent HLA-A alleles, i.e., HLA-A*3001 and HLA-A*3002, to study differences in mycobacterial peptide presentation and CD8(+) T-cell recognition. We screened a peptide library (9-mer peptides with an 8-amino-acid overlap) for binding, affinity, and off-rate of the Mycobacterium tuberculosis-associated antigen TB10.4 and identified only three TB10.4 peptides with considerable binding to HLA-A*3001. In contrast, 22 peptides bound to HLA-A*3002. This reflects a marked difference in the binding preference between the two alleles, with A*3002 tolerating a more promiscuous peptide-binding pattern and A*3001 accommodating only a very selective peptide repertoire. Subsequent analysis of the affinity and off-rate of the binding peptides revealed a strong affinity (8 nM to 7 ÎŒM) and moderate off-rate (20 min to 3 h) for both alleles. Construction of HLA-A*3001 and HLA-A*3002 tetramers containing selected binding peptides from TB10.4, including a peptide which was shared among both alleles, QIMYNYPAM (TB10.4(3-11)), allowed us to enumerate epitope-specific T cells in HLA-A*3001- and HLA-A*3002-typed patients with active TB. HLA-A*3001 and HLA-A*3002 major histocompatibility complex-peptide complexes were recognized in individuals with active TB, irrespective of their homozygous HLA-A*3001 or HLA-A*3002 genetic background. The antigen-specific T cells exhibited the CD45RA(+) CCR7(+) precursor phenotype and the interleukin-7 receptor (CD127), which were different from the phenotype and receptor exhibited by the parental CD8(+) T-cell population

    Safety and Immunogenicity of the Recombinant BCG Vaccine AERAS-422 in Healthy BCG-naĂŻve Adults: A Randomized, Active-controlled, First-in-human Phase 1 Trial

    Get PDF
    Background: We report a first-in-human trial evaluating safety and immunogenicity of a recombinant BCG, AERAS-422, over-expressing TB antigens Ag85A, Ag85B, and Rv3407 and expressing mutant perfringolysin. Methods: This was a randomized, double-blind, dose-escalation trial in HIV-negative, healthy adult, BCG-naĂŻve volunteers, negative for prior exposure to Mtb, at one US clinical site. Volunteers were randomized 2:1 at each dose level to receive a single intradermal dose of AERAS-422 (>105–< 106 CFU = low dose, ≄106– < 107 CFU = high dose) or non-recombinant Tice BCG (1–8 × 105 CFU). Randomization used an independently prepared randomly generated sequence of treatment assignments. The primary and secondary outcomes were safety and immunogenicity, respectively, assessed in all participants through 182 days post-vaccination. ClinicalTrials.gov registration number: NCT01340820. Findings: Between Nov 2010 and Aug 2011, 24 volunteers were enrolled (AERAS-422 high dose, n = 8; AERAS-422 low dose, n = 8; Tice BCG, n = 8); all were included in the safety and immunogenicity analyses. All 24 subjects had at least one adverse event, primarily expected local reactions. High dose AERAS-422 vaccination induced Ag85A- and Ag85B-specific lymphoproliferative responses and marked anti-mycobacterial activity in a whole blood bactericidal activity culture assay (WBA), but was associated with varicella zoster virus (VZV) reactivation in two vaccinees. These volunteers displayed high BCG-specific IFN-Îł responses pre- and post-vaccination possibly predisposing them to autocrine/paracrine negative regulation of immune control of latent VZV. A systems biology transcriptomal approach identified positive correlations between post-vaccination T cell expression modules and WBA, and negative correlations between post-vaccination monocyte expression modules and WBA. The expression of one key macrophage marker (F4/80) was constitutively elevated in the two volunteers with zoster. Interpretation: The unexpected development of VZV in two of eight healthy adult vaccine recipients resulted in discontinuation of AERAS-422 vaccine development. Immunological and transcriptomal data identified correlations with the development of TB immunity and VZV that require further investigation. Funding: Aeras, FDA, Bill and Melinda Gates Foundation

    Study Timeline and Sampling Schedule.

    No full text
    <p>NHPs were boosted with AERAS-402 fifteen and twenty-seven weeks after the prime with BCG or AFRO-1, Animals in group 1 were primed with BCG, animals in group 2 with the recombinant BCG (AFRO-1) which combines endosomal escape, TB10.4 expression and over-expression of Ag85A and Ag85B. Animals in both groups were boosted with the non-replicating adenovirus 35 AERAS-402 which expresses the Ag85A, Ag85B and TB10.4 fusion protein. Animals in group 3 received the diluent (control group).</p

    Prime with BCG or AFRO-1 induces a different IFN-Îł production profile in response to <i>Mtb</i> antigen stimulation.

    No full text
    <p>The median of IFN-Îł production (measured by ELISA) in whole blood cultures for each group in response to different <i>Mtb</i> antigen stimulation was assessed. Stronger IFN-Îł production was seen in animals primed with AFRO-1 in response to Ag85A and Ag85B, as compared to animals primed with BCG one week after the first boost with AERAS-402.</p

    Prime with AFRO-1 induces proliferation of Ag85B-specific T cells in CD4<sup>+</sup> and CD8alpha/alpha<sup>+</sup> T cells.

    No full text
    <p>The median of the proliferation index (% of blasts in response to antigen stimulation - % of blasts in negative control) in response to <i>Mtb</i> antigens was determined by flow cytometric analysis. Differential expansion of T cell subsets was gauged by gating on T cell subsets, i.e. CD4<sup>+</sup>, CD8alpha/beta<sup>+</sup> and CD8alpha/alpha<sup>+</sup>. Animals primed with AFRO-1 showed stronger proliferation in response to Ag85B stimulation within CD4<sup>+</sup> T cells (A) and CD8alpha/alpha<sup>+</sup> T cells (B) as compared to animals primed with BCG one week after the first boost with AERAS-402. No difference was detectable between animals primed with AFRO-1 or BCG in the CD8alpha/beta<sup>+</sup> T cell compartment (C).</p
    corecore