606 research outputs found

    Metallurgy of soft spheres with hard core: from BCC to Frank-Kasper phases

    Full text link
    Understanding how soft particles can fill the space is still an open question. Structures far from classical FCC or BCC phases are now commonly experimentally observed in many different systems. Models based on pair interaction between soft particle are at present much studied in 2D. Pair interaction with two different lengths have been shown to lead to quasicrystalline architectures. It is also the case for a hard core with a square repulsive shoulder potential. In 3D, global approaches have been proposed for instance by minimizing the interface area between the deformed objects in the case of foams or micellar systems or using self-consistent mean field theory in copolymer melts. In this paper we propose to compare a strong van der Waals attraction between spherical hard cores and an elastic energy associated to the deformation of the soft corona. This deformation is measured as the shift between the deformed shell compared to a corona with a perfect spherical symmetry. The two main parameters in this model are: the hard core volume fraction and the weight of the elastic energy compared to the van der Waals one. The elastic energy clearly favours the BCC structure but large van der Waals forces favors Frank and Kasper phases. This result opens a route towards controlling the building of nanoparticle superlattices with complex structures and thus original physical properties.Comment: To appear in EPJ

    Geometrical approach to SU(2) navigation with Fibonacci anyons

    Full text link
    Topological quantum computation with Fibonacci anyons relies on the possibility of efficiently generating unitary transformations upon pseudoparticles braiding. The crucial fact that such set of braids has a dense image in the unitary operations space is well known; in addition, the Solovay-Kitaev algorithm allows to approach a given unitary operation to any desired accuracy. In this paper, the latter task is fulfilled with an alternative method, in the SU(2) case, based on a generalization of the geodesic dome construction to higher dimension.Comment: 12 pages, 5 figure

    Forever Young: Aging Control For Smartphones In Hybrid Networks

    Get PDF
    The demand for Internet services that require frequent updates through small messages, such as microblogging, has tremendously grown in the past few years. Although the use of such applications by domestic users is usually free, their access from mobile devices is subject to fees and consumes energy from limited batteries. If a user activates his mobile device and is in range of a service provider, a content update is received at the expense of monetary and energy costs. Thus, users face a tradeoff between such costs and their messages aging. The goal of this paper is to show how to cope with such a tradeoff, by devising \emph{aging control policies}. An aging control policy consists of deciding, based on the current utility of the last message received, whether to activate the mobile device, and if so, which technology to use (WiFi or 3G). We present a model that yields the optimal aging control policy. Our model is based on a Markov Decision Process in which states correspond to message ages. Using our model, we show the existence of an optimal strategy in the class of threshold strategies, wherein users activate their mobile devices if the age of their messages surpasses a given threshold and remain inactive otherwise. We then consider strategic content providers (publishers) that offer \emph{bonus packages} to users, so as to incent them to download updates of advertisement campaigns. We provide simple algorithms for publishers to determine optimal bonus levels, leveraging the fact that users adopt their optimal aging control strategies. The accuracy of our model is validated against traces from the UMass DieselNet bus network.Comment: See also http://www-net.cs.umass.edu/~sadoc/agecontrol

    Signature of nearly icosahedral structures in liquid and supercooled liquid Copper

    Full text link
    A growing body of experiments display indirect evidence of icosahedral structures in supercooled liquid metals. Computer simulations provide more direct evidence but generally rely on approximate interatomic potentials of unproven accuracy. We use first-principles molecular dynamics simulations to generate realistic atomic configurations, providing structural detail not directly available from experiment, based on interatomic forces that are more reliable than conventional simulations. We analyze liquid copper, for which recent experimental results are available for comparison, to quantify the degree of local icosahedral and polytetrahedral order

    Large increase of the Curie temperature by orbital ordering control

    Full text link
    Using first principle calculations we showed that the Curie temperature of manganites thin films can be increased by far more than an order of magnitude by applying appropriate strains. Our main breakthrough is that the control of the orbital ordering responsible for the spectacular TCT_C increase cannot be imposed by the substrate only. Indeed, the strains, first applied by the substrate, need to be maintained over the growth direction by the alternation of the manganite layers with another appropriate material. Following these theoretical findings, we synthesized such super-lattices and verified our theoretical predictions
    corecore