3,409 research outputs found

    Microstructure-failure mode correlations in braided composites

    Get PDF
    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting

    Coherence-enhanced imaging of a degenerate Bose gas

    Full text link
    We present coherence-enhanced imaging, an in situ technique that uses Raman superradiance to probe the spatial coherence properties of an ultracold gas. Applying this method, we obtain a spatially resolved measurement of the condensate number and more generally, of the first-order spatial correlation function in a gas of 87^{87}Rb atoms. We observe the enhanced decay of propagating spin gratings in high density regions of a Bose condensate, a decay we ascribe to collective, non-linear atom-atom scattering. Further, we directly observe spatial inhomogeneities that arise generally in the course of extended sample superradiance.Comment: 4 pages, 4 figure

    A Sensor Failure Simulator for Control System Reliability Studies

    Get PDF
    A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec

    From gas to galaxies

    Full text link
    The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes. In deep surveys SKA will be able to detect HI in emission out to redshifts of z2.5z \approx 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars. These and other aspects of SKA imaging of galaxies will be discussed.Comment: To be published in New Astronomy Reviews, Elsevier, Amsterdam as part of "Science with the Square Kilometre Array", eds. C. Carilli and S. Rawlings. 18 pages + 13 figures; high resolution version and other chapters of "Science with the Square Kilometre Array" available at http://www.skatelescope.org/pages/science_gen.ht

    HI in four star-forming low-luminosity E/S0 and S0 galaxies

    Full text link
    We present HI data cubes of four low-luminosity early-type galaxies which are currently forming stars. These galaxies have absolute magnitudes in the range M_B=-17.9 to -19.9 (H_o=50 km/s/Mpc). Their HI masses range between a few times 10^8 and a few times 10^9 M_sun and the corresponding values for M_HI/L_B are between 0.07 and 0.42, so these systems are HI rich for their morphological type. In all four galaxies, the HI is strongly centrally concentrated with high central HI surface densities, in contrast to what is typically observed in more luminous early-type galaxies. In two galaxies (NGC 802 and ESO 118-G34), the kinematics of the HI suggests that the gas is in a strongly warped disk, which we take as evidence for recent accretion of HI. In the other two galaxies (NGC 2328 and ESO 027-G21) the HI must have been part of the systems for a considerable time. The HI properties of low-luminosity early-type galaxies appear to be systematically different from those of many more luminous early-type galaxies, and we suggest that these differences are due to a different evolution of the two classes. The star formation history of these galaxies remains unclear. Their UBV colours and Halpha emission-line strengths are consistent with having formed stars at a slowly-declining rate for most of the past 10^10 years. However, the current data do not rule out a small burst of recent star formation overlaid on an older stellar population.Comment: To appear in AJ, LateX, figures in gif format, paper also available at http://www.nfra.nl/~morganti/LowLu

    High-Resolution Magnetometry with a Spinor Bose-Einstein Condensate

    Full text link
    We demonstrate a precision magnetic microscope based on direct imaging of the Larmor precession of a 87^{87}Rb spinor Bose-Einstein condensate. This magnetometer attains a field sensitivity of 8.3 pT/Hz1/2^{1/2} over a measurement area of 120 μ\mum2^2, an improvement over the low-frequency field sensitivity of modern SQUID magnetometers. The corresponding atom shot-noise limited sensitivity is estimated to be 0.15 pT/Hz1/2^{1/2} for unity duty cycle measurement. The achieved phase sensitivity is close to the atom shot-noise limit suggesting possibilities of spatially resolved spin-squeezed magnetometry. This magnetometer marks a significant application of degenerate atomic gases to metrology

    The Evolution of Radio Galaxies at Intermediate Redshift

    Get PDF
    We describe a new estimate of the radio galaxy 1.4 GHz luminosity function and its evolution at intermediate redshifts (z~0.4). Photometric redshifts and color selection have been used to select Bj<23.5 early-type galaxies from the Panoramic Deep Fields, a multicolor survey of two 25 sq deg fields. Approximately 230 radio galaxies have then been selected by matching early-type galaxies with NVSS radio sources brighter than 5 mJy. Estimates of the 1.4 GHz luminosity function of radio galaxies measure significant evolution over the observed redshift range. For an Omega_M=1 cosmology the evolution of the radio power is consistent with luminosity evolution where P(z)=P(0)(1+z)^{k_L} and 3<k_L<5. The observed evolution is similar to that observed for UVX and X-ray selected AGN and is consistent with the same physical process being responsible for the optical and radio luminosity evolution of AGN.Comment: 26 pages, 9 Figures, Accepted for Publication in A

    From treebank resources to LFG F-structures

    Get PDF
    We present two methods for automatically annotating treebank resources with functional structures. Both methods define systematic patterns of correspondence between partial PS configurations and functional structures. These are applied to PS rules extracted from treebanks, or directly to constraint set encodings of treebank PS trees
    corecore