78 research outputs found

    Characterisation of InlA truncation in Listeria monocytogenes isolates from farm animals and human cases in the province of Quebec

    Full text link
    The introduction of Listeria monocytogenes into the food production chain is a concern, with numerous grouped cases of listeriosis associated with milk-derived or pork-derived products have been documented. Management of this zoonotic pathogen considers all strains as an equal risk. Recently, a new perspective for characterisation of strain virulence was introduced with the discovery of the unaltered sequence of InlA as a determinant of strain virulence; this has also been reported as an infrequent finding among so-called environmental strains, that is, strains isolated from food or from surfaces in food industries. The aim of this study was to differentiate L monocytogenes strains isolated from animal cases versus those from human cases and to differentiate clinical strains from environmental ones using a Caenorhabditis elegans virulence testing model. In Quebec in 2013/2014, the surveillance of L monocytogenes clinical isolates registered a total of 20 strains of animal origin and 16 pulsed-field gel electrophoresis types isolated from human cases. The mixed PCR multiplex agglutination protocol used for geno-serotyping clearly discriminated genogroup IVB strains from bovine and human origins. The presence of a premature stop codon single nucleotide polymorphism in the inlA gene sequence in clinical strains and the identical behaviour of particular strains in the C elegans model are discussed in this paper from the perspective of industrial management of L monocytogenes risk

    Draft Genome Sequence of a Necrotoxigenic Escherichia coli Isolate

    Get PDF
    Here, we present the draft genome sequence of a necrotoxigenic Escherichia coli strain isolated from a patient following a very rapidly evolving, lethal necrotizing fasciitis

    Tracking <em>Salmonella</em> Enteritidis in the Genomics Era: Clade Definition Using a SNP-PCR Assay and Implications for Population Structure

    Get PDF
    Salmonella enterica serovar Enteritidis (or Salmonella Enteritidis, SE) is one of the oldest members of the genus Salmonella, based on the date of first description and has only gained prominence as a significant bacterial contaminant of food over the last three or four decades. Currently, SE is the most common Salmonella serovar causing foodborne illnesses. Control measures to alleviate human infections require that food isolates be characterized and this was until recently carried out using Pulsed-Field Gel Electrophoresis (PFGE) and phage typing as the main laboratory subtyping tools for use in demonstrating relatedness of isolates recovered from infected humans and the food source. The results provided by these analytical tools were presented with easy-to-understand and comprehensible nomenclature, however, the techniques were inherently poorly discriminatory, which is attributable to the clonality of SE. The tools have now given way to whole genome sequencing which provides a full and comprehensive genetic attributes of an organism and a very attractive and superior tool for defining an isolate and for inferring genetic relatedness among isolates. A comparative phylogenomic analysis of isolates of choice provides both a visual appreciation of relatedness as well as quantifiable estimates of genetic distance. Despite the considerable information provided by whole genome analysis and development of a phylogenetic tree, the approach does not lend itself to generating a useful nomenclature-based description of SE subtypes. To this end, a highly discriminatory, cost-effective, high throughput, validated single nucleotide based genotypic polymerase chain reaction assay (SNP-PCR) was developed focussing on 60 polymorphic loci. The procedure was used to identify 25 circulating clades of SE, the largest number so far described for this organism. The new subtyping test, which exploited whole genome sequencing data, displays the attributes of an ideal subtyping test: high discrimination, low cost, rapid, highly reproducible and epidemiological concordance. The procedure is useful for identifying the subtype designation of an isolate, for defining the population structure of the organism as well as for surveillance and outbreak detection

    Whole genome-based genetic insights of blaNDM producing clinical E. coli isolates in hospitals settings of Pakistan

    Get PDF
    Carbapenem resistance among Enterobacterales has become a global health concern. Clinical Escherichia coli isolates producing the metallo β-lactamase NDM have been isolated from two hospitals in Faisalabad, Pakistan. These E. coli strains were characterized by MALDI-TOF, PCR, antimicrobial susceptibility testing, XbaI and S1 nuclease pulsed-field gel electrophoresis (PFGE), conjugation assay, DNA hybridization, whole genome sequencing, bioinformatic analysis, and Galleria mellonella experiments. Thirty-four blaNDM producing E. coli strains were identified among 52 nonduplicate carbapenem-resistant strains. More than 90% of the isolates were found to be multidrug resistant by antimicrobial susceptibility testing. S1 PFGE confirmed the presence of blaNDM gene on plasmids ranging from 40 kbps to 250 kbps, and conjugation assays demonstrated transfer frequencies of blaNDM harboring plasmids ranging from 1.59 × 10−1 to 6.46 × 10−8 per donor. Whole genome sequencing analysis revealed blaNDM-5 as the prominent NDM subtype with the highest prevalence of blaOXA-1, blaCTX-M-15, aadA2, aac(6')-Ib-cr, and tet(A) associated resistant determinants. E. coli sequence types: ST405, ST361, and ST167 were prominent, and plasmid Inc types: FII, FIA, FIB, FIC, X3, R, and Y, were observed among all isolates. The genetic environment of blaNDM region on IncF plasmids included partial ISAba125, the bleomycin ble gene, and a class I integron. The virulence genes terC, traT, gad, fyuA, irp2, capU, and sitA were frequently observed, and G. mellonella experiments showed that virulence correlated with the number of virulence determinants. A strong infection control management in the hospital is necessary to check the emergence of carbapenem resistance in Gram-negative bacteria. IMPORTANCE We describe a detailed analysis of highly resistant clinical E. coli isolates from two tertiary care centers in Pakistan including carbapenem resistance as well as common co-resistance mechanisms. South Asia has a huge problem with highly resistant E. coli. However, we find that though these isolates are very difficult to treat they are of low virulence. Thus the Western world has an increasing problem with virulent E. coli that are mostly of low antibiotic resistance, whereas, South Asia has an increasing problem with highly resistant E. coli that are of low virulence potential. These observations allow us to start to devise methodologies to limit both virulence and resistance and combat problems in developing nations as well as the Western world

    Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria

    Get PDF
    The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence

    Comparison of Disk Diffusion and Agar Dilution Methods for Erythromycin, Ciprofloxacin, and Tetracycline Susceptibility Testing of Campylobacter coli and for Tetracycline Susceptibility Testing of Campylobacter jejuni subsp. jejuniâ–¿

    No full text
    With disk diffusion, the following zone diameters are suggested to be resistant and susceptible breakpoints, respectively: for susceptibility testing of Campylobacter coli, no inhibition zone and 15 mm or more for erythromycin, and 20 mm or less and 25 mm or more for ciprofloxacin, in the absence or presence of an inhibition zone around the nalidixic acid disk; and for susceptibility testing of C. coli and Campylobacter jejuni, 20 mm or less and 26 mm or more for tetracycline
    • …
    corecore