103 research outputs found
Application of seismic attributes in structural study and fracture analysis of DQ oil field, Iran
The determination of the most unstable areas in oil fields is critical for addressing engineering problems of wellbore and sand production as well as geologic problems such as understanding dynamic constraints on hydrocarbon migration and fracture permeability. In this research work, coherency seismic attribute has been used for the determination of the most critical areas in terms of drilling stabilities in the DQ oil field, Iran. The results obtained have shown that the (1) predominant features are the SSE–NNW and N–S trends (2) the central part of the DQ structure shows the highest concentration of segment bundles, (3) the segment bundles seem to be aligned along some lineaments oriented SE–NW and SSE–NNW, and (4) on the eastern and western margins of the map there is an anomalous concentration of segments oriented E–W. It can be concluded that coherency attribute is a valuable tool for structural analysis highlighting those areas containing unstable features
Synthesis of mg/al layered double hydroxide (LDH) nanoplates for efficient removal of nitarate from aqueous solutions
Leaching of nitrate is an important issue on the losses of nitrate from agriculture soils in temperate zone. Decomposition of plants and other organic residues in the soil and improper discharge of sewage lead to the presence of nitrates in the sources of surface and groundwater and flowing water drainage in agricultural drainage networks and their pollution. This study aimed to study the potential use of chloride layered double hydroxide (LDH) nanoplates to remove nitrate from aqueous solutions. The nano-material of chloride-LDH was made by hydrothermal technique and then, its characteristics were specified through scanning electron micrograph and removal of nitrate from aqueous solution by the minerals was investigated in terms of pH, time, speed of shaker, different concentrations of adsorbent and surface adsorption isotherm. Microscopic images of built nanoplates were examined using FESEM and SEM electron microscope with two magnifications. The thickness of nanoplates was about 20nm and their diameter was about 250 nm. Magnified image of the synthesized nanostructures shows squamous-shape. Surface adsorption isotherm of nitrate by chloride- LDH nanoplate was explained with Langmuir model shown with the values greater than 2R. In surface adsorption of nitrate, the optimal values were measured as following: pH = 7, speed = 250 rpm, time = 45 min, concentration of adsorbent = 0.1gr. This material could adsorb nitrates from aqueous solutions efficiently and effectively.Keywords: pollution, nitrate, layered double hydroxide, hydrothermal, surface adsorptio
Metastability in spin polarised Fermi gases and quasiparticle decays
We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each process and calculated their rates, we apply this understanding to a Fermi sea of polarons by linking its metastability to the stability of individual polarons, and predicting a region of metastability for the normal partially polarised phase. In the limit of a single impurity, this region extends from the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose experiments to observe the threshold of the predicted region of metastability, the interaction strength at which the quasiparticle groundstate changes character, and the decay rate of polarons
Template-based growth of TiO₂ nanorods by sol-gel process
In this paper, the preparation of TiO2 nanorods by sol-gel-template process has
been considered. The prepared sols were characterized by using FTIR spectroscopy, and the obtained nanorods were characterized by X-ray diffraction and SEM microscopy.
SEM images show that TiO2 nanorods with uniform diameter of about 100-200 nm and a
length of several micrometers. The results of XRD indicated that the TiO₂ nanorods were
crystallized in the anatase and rutile phases after annealing to 400-700 ºC up to 2 hours
Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality
Strongly correlated quantum fluids are phases of matter that are
intrinsically quantum mechanical, and that do not have a simple description in
terms of weakly interacting quasi-particles. Two systems that have recently
attracted a great deal of interest are the quark-gluon plasma, a plasma of
strongly interacting quarks and gluons produced in relativistic heavy ion
collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic
gases confined in optical or magnetic traps. These systems differ by more than
20 orders of magnitude in temperature, but they were shown to exhibit very
similar hydrodynamic flow. In particular, both fluids exhibit a robustly low
shear viscosity to entropy density ratio which is characteristic of quantum
fluids described by holographic duality, a mapping from strongly correlated
quantum field theories to weakly curved higher dimensional classical gravity.
This review explores the connection between these fields, and it also serves as
an introduction to the Focus Issue of New Journal of Physics on Strongly
Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The
presentation is made accessible to the general physics reader and includes
discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics
special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold
Quantum Gases to QCD Plasmas"
(http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas
How to use implantable loop recorders in clinical trials and hybrid therapy
Epidemiological studies show that atrial fibrillation (AF) is associated with a doubling of mortality, even after adjustment for confounders. AF can be asymptomatic, but this does not decrease the thromboembolic risk of the patient. Office ECGs, occasional 24-h Holter recordings and long-term ECG event recording might not be sensitive and accurate enough in patients with AF, especially in those with paroxysmal episodes. In one study, 7 days of continuous monitoring with event recorders detected paroxysmal AF in 20 of 65 patients with a previous negative 24-h Holter recording. Over the last decade, enormous improvements have been made in the technology of implantable devices, which can now store significant information regarding heart rhythm. The first subcutaneous implantable monitor (Reveal XT, Medtronic) was validated for continuous AF monitoring by the XPECT study. The dedicated AF detection algorithm uses irregularity and incoherence of R–R intervals to identify and classify patterns in ventricular conduction. Its sensitivity in identifying patients with AF is >96%. Numerous clinical data from continuous monitoring of AF have recently been published. The first applications of this technology have been in the field of surgical and catheter AF ablation. With regard to cryptogenic stroke, an international randomized trial is ongoing to compare standard care with standard care plus the implantable cardiac monitor for AF detection in patients discharged with the diagnosis of cryptogenic stroke: the Crystal AF trial. Continuous AF monitoring provides an optimal picture of daily AF burden, both symptomatic and asymptomatic. Implantable cardiac monitors have high sensitivity, enable better assessment of therapy success and may guide further AF therapy
Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases
We analyze the properties of a single impurity immersed in a Fermi sea. At
positive energy and scattering lengths, we show that the system possesses a
well-defined but metastable excitation, the repulsive polaron, and we calculate
its energy, quasiparticle residue and effective mass. From a thermodynamic
argument we obtain the number of particles in the dressing cloud, illustrating
the repulsive character of the polaron. Identifying the important 2- and 3-body
decay channels, we furthermore calculate the lifetime of the repulsive polaron.
The stability conditions for the formation of fully spin polarized
(ferromagnetic) domains are then examined for a binary mixture of atoms with a
general mass ratio. Our results indicate that mass imbalance lowers the
critical interaction strength for phase-separation, but that very short
quasiparticle decay times will complicate the experimental observation of
itinerant ferromagnetism. Finally, we present the spectral function of the
impurity for various coupling strengths and momenta.Comment: Substantial improvements to the section describing quasiparticle
decays (included a discussion of two-body and three-body processes), and to
the criteria for the stability of the itinerant ferromagnetic phas
Metastability and Coherence of Repulsive Polarons in a Strongly Interacting Fermi Mixture
Ultracold Fermi gases with tuneable interactions represent a unique test bed
to explore the many-body physics of strongly interacting quantum systems. In
the past decade, experiments have investigated a wealth of intriguing
phenomena, and precise measurements of ground-state properties have provided
exquisite benchmarks for the development of elaborate theoretical descriptions.
Metastable states in Fermi gases with strong repulsive interactions represent
an exciting new frontier in the field. The realization of such systems
constitutes a major challenge since a strong repulsive interaction in an atomic
quantum gas implies the existence of a weakly bound molecular state, which
makes the system intrinsically unstable against decay. Here, we exploit
radio-frequency spectroscopy to measure the complete excitation spectrum of
fermionic 40K impurities resonantly interacting with a Fermi sea of 6Li atoms.
In particular, we show that a well-defined quasiparticle exists for strongly
repulsive interactions. For this "repulsive polaron" we measure its energy and
its lifetime against decay. We also probe its coherence properties by measuring
the quasiparticle residue. The results are well described by a theoretical
approach that takes into account the finite effective range of the interaction
in our system. We find that a non-zero range of the order of the interparticle
spacing results in a substantial lifetime increase. This major benefit for the
stability of the repulsive branch opens up new perspectives for investigating
novel phenomena in metastable, repulsively interacting fermion systems.Comment: 11 pages, 9 figure
A New Algorithm for Phased Array Radar Search Function Improvement in Overload Situations
A new algorithm is proposed for phased array radar search function resource allocation. The proposed algorithm adaptively priorities radar search regions and in overload situations, based on available resources, radar characteristics, maximum range and search regions, optimally allocates radar resources in order to maximize probability of detection. The performance of new algorithm is evaluated by the multifunction phased array radar simulation test bed. This simulation test bed provides capability to design and evaluate the performance of different radar resource management, target tracking and beam forming algorithms. Some results are presented that show capabilities of this simulation software for multifunction radar algorithms design and performance evaluation
- …