5 research outputs found

    Array-derived peak ground rotation rate vs. peak ground acceleration : scaling relations from seismicity induced by the Espoo/Helsinki geothermal stimulation

    Get PDF
    In 2018 and 2020, two weeks-long geothermal reservoir stimulations were performed some 6 km below the Helsinki capital area, Finland. The seismic activity was recorded by a set of surface broadband sensors and 100 geophones installed by the Institute of Seismology, University of Helsinki, as well as Finnish National Seismic Network stations. The local magnitudes (ML) of the recorded earthquakes are estimated using a Finnish local magnitude scale and the local magnitude of the largest induced event was 1.8. We apply three different approaches for estimation of moment magnitudes (MW) to a data base of ~400 induced seismic events from the 2018 stimulation to explore the variability and sensitivity of the magnitude estimates. This is important for real-time monitoring and decision making when the induced event magnitudes approach the pre-defined magnitude limit, and to assess which trends can be robustly associated to earthquake source physics. (1) We employ a time-domain calculation of source parameters based on the application of Parseval's theorem to the integrals of the squared spectral displacement and velocity for the horizontal S-wave trains. The time window between the S-wave arrival time and twice the length of the S-wave travel time is considered for the S-wave train isolation. (2) We obtain moment magnitude estimates from an inversion of 50 s long three-component envelopes based on radiative transfer. (3) We apply a moment tensor inversion to 0.71 s long P and 0.81 s long S-wave signals. We fit a linear ML-MW conversion model to the values obtained from the different approaches. Considering the available local magnitude range between –0.5 and 1.8, a comparison of the linear conversion models shows that the moment magnitudes form the envelope inversion are systematically larger by ~0.2 units compared to those obtained from the moment tensor inversion. While the moment magnitudes determined by the time-domain calculation consistently exceed those of the envelope inversion for small local magnitudes (by ~0.2 units), they tend to yield similar estimates towards the larger local magnitudes. Other source parameter systematics include that the smallest seismic moment is obtained with the moment tensor inversion, and the largest with the time-domain equivalent of the spectral integrals. An initial extension of the analysis to 2020 data yields ML-MW as well as corner frequency-MW scaling relations that are, interestingly, different compared to the 2018 results; we will present updated results that inform about the reliability of these trends

    Magnitude estimates of earthquakes induced by the geothermal stimulations in Espoo/Helsinki, southern Finland : a comparison of different approaches

    Get PDF
    In 2018 and 2020, two weeks-long geothermal reservoir stimulations were performed some 6 km below the Helsinki capital area, Finland. The seismic activity was recorded by a set of surface broadband sensors and 100 geophones installed by the Institute of Seismology, University of Helsinki, as well as Finnish National Seismic Network stations. The local magnitudes (ML) of the recorded earthquakes are estimated using a Finnish local magnitude scale and the local magnitude of the largest induced event was 1.8. We apply three different approaches for estimation of moment magnitudes (MW) to a data base of ~400 induced seismic events from the 2018 stimulation to explore the variability and sensitivity of the magnitude estimates. This is important for real-time monitoring and decision making when the induced event magnitudes approach the pre-defined magnitude limit, and to assess which trends can be robustly associated to earthquake source physics. (1) We employ a time-domain calculation of source parameters based on the application of Parseval's theorem to the integrals of the squared spectral displacement and velocity for the horizontal S-wave trains. The time window between the S-wave arrival time and twice the length of the S-wave travel time is considered for the S-wave train isolation. (2) We obtain moment magnitude estimates from an inversion of 50 s long three-component envelopes based on radiative transfer. (3) We apply a moment tensor inversion to 0.71 s long P and 0.81 s long S-wave signals. We fit a linear ML-MW conversion model to the values obtained from the different approaches. Considering the available local magnitude range between –0.5 and 1.8, a comparison of the linear conversion models shows that the moment magnitudes form the envelope inversion are systematically larger by ~0.2 units compared to those obtained from the moment tensor inversion. While the moment magnitudes determined by the time-domain calculation consistently exceed those of the envelope inversion for small local magnitudes (by ~0.2 units), they tend to yield similar estimates towards the larger local magnitudes. Other source parameter systematics include that the smallest seismic moment is obtained with the moment tensor inversion, and the largest with the time-domain equivalent of the spectral integrals. An initial extension of the analysis to 2020 data yields ML-MW as well as corner frequency-MW scaling relations that are, interestingly, different compared to the 2018 results; we will present updated results that inform about the reliability of these trends

    Seismic Anisotropy and Its Geodynamic Implications in Iran, the Easternmost Part of the Tethyan Belt

    No full text
    In this study, we use the results of seismic anisotropy as inferred from shear wave splitting analyses of SKS phases to propose a geodynamical model of the Arabia-Eurasia collision zone. A detailed analysis of the 202 non-null splitting and 196 null splitting measurements obtained from a dense temporary network are utilized to investigate the possibility of lateral and vertical variations in the anisotropic parameters and the hypothesis of a dipping anisotropic layer. A 2D geodynamical model of the western part of the collision zone is constructed. The preferred 2D model suggests that the belt-parallel orientation of fast axes in the western Zagros originates from a lithospheric transpressional deformation. The plate motion-parallel pattern in central Iran and western Alborz coincides with the decrease in the lithospheric thickness. Thus, we believe this trend has its origin in the asthenosphere. A combination of the keel effect of the thickened Zagros lithosphere, the asthenospheric edge-driven convection flow and the lithospheric deformation in the shear zones can cause the NW-SE oriented splitting pattern reported in some parts of central Iran. The asthenospheric flow beneath the thinner lithosphere to the south of the Bitlis suture in northern Iraq is likely the causative mechanism for our observed plate motion-parallel splittings there. The variation of the convergence obliquity along the Alborz and Zagros inferred from analysis of geodetic data implies that a change in the pattern of lithospheric deformation and the consequent anisotropy is expected.Published4377-43951T. Struttura della TerraJCR Journa

    High-Resolution Crustal S-wave Velocity Model and Moho Geometry Beneath the Southeastern Alps: New Insights From the SWATH-D Experiment

    Get PDF
    We compiled a dataset of continuous recordings from the temporary and permanent seismic networks to compute the high-resolution 3D S-wave velocity model of the Southeastern Alps, the western part of the external Dinarides, and the Friuli and Venetian plains through ambient noise tomography. Part of the dataset is recorded by the SWATH-D temporary network and permanent networks in Italy, Austria, Slovenia and Croatia between October 2017 and July 2018. We computed 4050 vertical component cross-correlations to obtain the empirical Rayleigh wave Green’s functions. The dataset is complemented by adopting 1804 high-quality correlograms from other studies. The fast-marching method for 2D surface wave tomography is applied to the phase velocity dispersion curves in the 2–30 s period band. The resulting local dispersion curves are inverted for 1D S-wave velocity profiles using the non-perturbational and perturbational inversion methods. We assembled the 1D S-wave velocity profiles into a pseudo-3D S-wave velocity model from the surface down to 60 km depth. A range of iso-velocities, representing the crystalline basement depth and the crustal thickness, are determined. We found the average depth over the 2.8–3.0 and 4.1–4.3 km/s iso-velocity ranges to be reasonable representations of the crystalline basement and Moho depths, respectively. The basement depth map shows that the shallower crystalline basement beneath the Schio-Vicenza fault highlights the boundary between the deeper Venetian and Friuli plains to the east and the Po-plain to the west. The estimated Moho depth map displays a thickened crust along the boundary between the Friuli plain and the external Dinarides. It also reveals a N-S narrow corridor of crustal thinning to the east of the junction of Giudicarie and Periadriatic lines, which was not reported by other seismic imaging studies. This corridor of shallower Moho is located beneath the surface outcrop of the Permian magmatic rocks and seems to be connected to the continuation of the Permian magmatism to the deep-seated crust. We compared the shallow crustal velocities and the hypocentral location of the earthquakes in the Southern foothills of the Alps. It revealed that the seismicity mainly occurs in the S-wave velocity range between ∼3.1 and ∼3.6 km/s
    corecore