23 research outputs found

    Nadimi, Sadegh

    No full text

    CFD modelling of the effect of capillary pressure on retention behaviour of water menisci at inter-particle contacts

    Get PDF
    This paper presents a Computational Fluid Dynamics (CFD) model on the effect of capillary pressure on the retention behaviour of a granular material. The model proposes an unprecedented CFD insight into the onset of liquid menisci at the inter-particles contact under varying hydraulic conditions. The present work models the material grains as smooth spherical particles that define a porous network filled by two interstitial fluids: air and silicon oil. The numerical model has been subsequently validated against experimental measurements of the degree of saturation at different capillary pressures taken by Dullien et al. [F.A. Dullien, C. Zarcone, I.F. MacDonald, A. Collins, R.D. Bochard. J. Colloid Interface Sci. 127, 2 (1989)] in a system of smooth glass beads flooded with silicon oil. Results from the numerical simulations confirm the good capability of the model to reproduce the experimental retention behaviour of the granular material. Finally, the present paper laid the basis for future CFD studies on the effect of various factors (e.g. hydraulic hysteresis, surface roughness and/or grain shape) on the capillary pressure acting at the interparticle contact

    Softening-based interface model and nonlinear load-settlement response analysis of piles in saturated and unsaturated multi-layered soils

    No full text
    This work presents a simplified method for the nonlinear analysis of the load–displacement response of piles in multi-layered soils. As a starting step, a new interface model based on the disturbed state concept (DSC) is put forth to simulate the interface shear stress-displacement relationship by considering the nonlinear hardening–softening behaviour. In the new model, input parameters can be conveniently calibrated using conventional interface shear tests or on-site tests. The good agreement between predictions and experimental data from interface direct shear tests validated the performance of the proposed DSC model. The DSC model performed better in terms of predictions when compared to the hyperbolic one. Next, the soil-structure interface model and bearing capacity theory are coupled to provide a theoretical framework for the analysis of pile load-transfer in saturated and unsaturated multi-layered soils, where the DSC model is employed to represent base resistance as well as skin friction. This work also discusses the profile of steady-state in-situ matric suction, soil–water characteristic curve, and pore-water pressure of unsaturated soils. The proposed method has the advantage of being used in practice as it is simple to obtain input parameters from laboratory tests, as well as Standard Penetration or Cone Penetration Tests. The proposed framework is finally applied to the analysis of five well-documented case studies. The proposed approach and the static load test results from the field measurements are found to be in satisfactory agreement, indicating that the proposed method performs well. The proposed method is suggested to be utilised for preliminary analysis, planning a suitable programme of loading tests, as well as optimizing the pile design by back analysis of the load test results.</p

    Characterisation of physical and mechanical properties of seven particulate materials proposed as traction enhancers

    No full text
    Abstract Particulate materials are utilised in many applications to manipulate the friction between surfaces. This dataset provides the characteristics of particulates used as rail sand in the train’s wheel/rail interface (via an on-board system) to facilitate the train’s acceleration and deceleration. Seven materials are studied including Austrian rail sand, standard Great British rail sand, waste glass beads, recycled crushed glass, non-coated alumina, coated alumina, and dolomite. The main objective of this research is to provide a physical and mechanical characterisation of these granular materials in terms of their density, bulk behaviour, particle size, particle shape, hardness, reduced modulus, and mineralogical properties. In particular, three-dimensional raw and post-processed micro-computed tomography images of more than 1200 particles are shared. The results provide a detailed dataset which can be used in ongoing and future experimental and numerical investigations studying the role of particulates in the wheel/rail interface

    Imaging the root–rhizosphere interface using micro computed tomography: quantifying void ratio and root volume ratio profiles

    Get PDF
    Root growth alters soil fabric and consequently its mechanical and physical properties. Recent studies show that roots induce compaction of soil in their immediate vicinity, a region that is central for plant health. However, high quality quantification of root influence on the soil fabric, able to inform computational models is lacking from the literature. This study quantifies the relationship between soil physical characteristics and root growth, giving special emphasis on how roots in early stage formation influence the physical architecture of the surrounding soil structure. High-resolution X-ray micro-Computed Tomography (µCT) is used to acquire three dimensional images of two homogeneously-packed samples. It is observed that the void ratio profile extending from the soil-root interface into the bulk soil is altered by root growth. The roots considerably modify the immediate soil physical characteristics by creating micro cracks at the soil-root interface and by increasing void ratio. This paper presents the mechanisms that led to the observed structure as well as some of the implications that it has in such a dynamic zone

    Imaging the root–rhizosphere interface using micro computed tomography: quantifying void ratio and root volume ratio profiles

    No full text
    Root growth alters soil fabric and consequently its mechanical and physical properties. Recent studies show that roots induce compaction of soil in their immediate vicinity, a region that is central for plant health. However, high quality quantification of root influence on the soil fabric, able to inform computational models is lacking from the literature. This study quantifies the relationship between soil physical characteristics and root growth, giving special emphasis on how roots in early stage formation influence the physical architecture of the surrounding soil structure. High-resolution X-ray micro-Computed Tomography (µCT) is used to acquire three dimensional images of two homogeneously-packed samples. It is observed that the void ratio profile extending from the soil-root interface into the bulk soil is altered by root growth. The roots considerably modify the immediate soil physical characteristics by creating micro cracks at the soil-root interface and by increasing void ratio. This paper presents the mechanisms that led to the observed structure as well as some of the implications that it has in such a dynamic zone
    corecore