3 research outputs found

    The effect of load modelling on phase balancing in distribution networks using search harmony algorithm

    Get PDF
    Due to the unequal loads in phases and different customer consumption, the distribution network is unbalanced. Unbalancing in the distribution network, in addition to increasing power losses, causes unbalancing in voltages and increases operating costs. To reduce this unbalancing, various methods and algorithms have been presented. In most studies and even practical projects due to lack of information about the network loads, load models such as constant power model, constant current or constant impedance are used to model the loads. Due to the changing and nonlinear behaviours of today's loads, these models cannot show results in accordance with reality. This paper while introducing an optimal phase-balancing method, discusses the effect of load modelling on phase balancing studies. In this process the re-phasing method for balancing the network and the harmony search algorithm for optimizing the phase displacement process have been used. The simulation was carried out on an unbalanced distribution network of 25 buses. The results show well the effect of this comprehensive modelling on phase balancing studies. It also shows that in the re-phasing method for balancing the network and in the absence of a real load model, the use of which model offers the closest answer to optimal solutions

    Transient fault area location and fault classification for distribution systems based on wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    A novel method to locate the zone of transient faults and to classify the fault type in Power Distribution Systems using wavelet transforms and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) has been developed. It draws on advanced techniques of signal processing based on wavelet transforms, using data sampled from the main feeder current to extract important characteristics and dynamic features of the fault signal. In this method, algorithms designed for fault detection and classification based on features extracted from wavelet transforms were implemented. One of four different algorithms based on ANFIS, according to the type of fault, was then used to locate the fault zone. Studies and simulations in an EMTP-RV environment for the 25kV power distribution system of Canada were carried out by considering ten types of faults with different fault inception, fault resistance and fault locations. The simulation results showed high accuracy in classifying the type of fault and determining the fault area, so that the maximum observed error was less than 2%

    Permanent Fault Location in Distribution System Using Phasor Measurement Units (PMU) in Phase Domain

    Get PDF
    This paper proposes a new method for locating high impedance fault in distribution systems using phasor measurement units (PMUs) installed at certain locations of the system. To implement this algorithm, at first a new method is suggested for the placement of PMUs. Taking information from the units, voltage and current of the entire distribution system are calculated. Then, the two buses in which the fault has been occurred is determined, and location and type of the fault are identified. The main characteristics of the proposed method are: the use of distributed parameter line model in phase domain, considering the presence of literals, and high precision in calculating the high impedance fault location. The results obtained from simulations in EMTP-RV and MATLAB software indicate high accuracy and independence of the proposed method from the fault type, fault location and fault resistance compared to previous methods, so that the maximum observed error was less than 0.15
    corecore