50 research outputs found

    An Inexpensive Liquid Crystal Spectropolarimeter for the Dominion Astrophysical Observatory Plaskett Telescope

    Full text link
    A new, inexpensive polarimetric unit has been constructed for the Dominion Astrophysical Observatory (DAO) 1.8-m Plaskett telescope. It is implemented as a plug-in module for the telescope's existing Cassegrain spectrograph, and enables medium resolution (R~10,000) circular spectropolarimetry of point sources. A dual-beam design together with fast switching of the wave plate at rates up to 100Hz, and synchronized with charge shuffling on the CCD, is used to significantly reduce instrumental effects and achieve high-precision spectropolarimetric measurements for a very low cost. The instrument is optimized to work in the wavelength range 4700 - 5300A to simultaneously detect polarization signals in the H beta line as well as nearby metallic lines. In this paper we describe the technical details of the instrument, our observing strategy and data reduction techniques, and present tests of its scientific performance.Comment: 32 pages, 15 figures. Accepted for publication in PAS

    NFIRAOS: TMT facility adaptive optics with conventional DMs

    Get PDF
    Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system feeding three instruments on the Nasmyth platform. For this Narrow-Field Infrared Adaptive Optics System, NFIRAOS (pronounced nefarious), the TMT project considered two architectures. One, described in this paper, employs conventional deformable mirrors with large diameters of about 300 mm and this is the reference design adopted by the TMT project. An alternative design based on MEMS was also studied, and is being presented separately in this conference. The requirements for NFIRAOS include 0.8-5 microns wavelength range, 30 arcsecond diameter output field of view (FOV), excellent sky coverage, and diffraction- limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes multiple sodium laser guide stars over a 70 arcsecond FOV, and an infrared tip/tilt/focus/astigmatism natural guide star sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to partially correct a 2 arcminute diameter "technical" field to sharpen near-IR natural guide stars and improve sky coverage. The planned upgrade to full performance includes replacing the groundconjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS incorporates an instrument rotator and selection of three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera

    Gemini planet imager observational calibrations V: Astrometry and distortion

    Get PDF
    This is the final version of the article. Available from SPIE via the DOI in this record.From Conference Volume 9147: Ground-based and Airborne Instrumentation for Astronomy V, Suzanne K. Ramsay; Ian S. McLean; Hideki Takami, Montréal, Quebec, Canada, June 22, 2014We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale∗ of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 ± 0.01 millarcseconds/pixel, and the north angle is -1.00 ± 0.03°. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ∼1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians.The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). This publication makes use of data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. P.K. and J.R.G. thank support from NASA NNX11AD21G, NSF AST-0909188, and the University of California LFRP-118057. Q.M.K is a Dunlap Fellow at the Dunlap Institute for Astronomy & Astrophysics, University of Toronto. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto

    NFIRAOS: TMT facility adaptive optics with conventional DMs

    Get PDF
    Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system feeding three instruments on the Nasmyth platform. For this Narrow-Field Infrared Adaptive Optics System, NFIRAOS (pronounced nefarious), the TMT project considered two architectures. One, described in this paper, employs conventional deformable mirrors with large diameters of about 300 mm and this is the reference design adopted by the TMT project. An alternative design based on MEMS was also studied, and is being presented separately in this conference. The requirements for NFIRAOS include 0.8-5 microns wavelength range, 30 arcsecond diameter output field of view (FOV), excellent sky coverage, and diffraction- limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes multiple sodium laser guide stars over a 70 arcsecond FOV, and an infrared tip/tilt/focus/astigmatism natural guide star sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to partially correct a 2 arcminute diameter "technical" field to sharpen near-IR natural guide stars and improve sky coverage. The planned upgrade to full performance includes replacing the groundconjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS incorporates an instrument rotator and selection of three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera

    MCAO for Gemini South

    Get PDF
    The multi-conjugate adaptive optics (MCAO) system design for the Gemini-South 8-meter telescope will provide near-diffraction-limited, highly uniform atmospheric turbulence compensation at near-infrared wavelengths over a 2 arc minute diameter field-of-view. The design includes three deformable mirrors optically conjugate to ranges of 0, 4.5, and 9.0 kilometers with 349, 468, and 208 actuators, five 10-Watt-class sodium laser guide stars (LGSs) projected from a laser launch telescope located behind the Gemini secondary mirror, five Shack-Hartmann LGS wavefront sensors of order 16 by 16, and three tip/tilt natural guide star (NGS) wavefront sensors to measure tip/tilt and tilt anisoplanatism wavefront errors. The WFS sampling rate is 800 Hz. This paper provides a brief overview of sample science applications and performance estimates for the Gemini South MCAO system, together with a summary of the performance requirements and/or design status of the principal subsystems. These include the adaptive optics module (AOM), the laser system (LS), the beam transfer optics (BTO) and laser launch telescope (LLT), the real time control (RTC) system, and the aircraft safety system (SALSA)

    GPI Spectra of HR8799 C, D, and E in H-K Bands with KLIP Forward Modeling

    Get PDF
    We demonstrate KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR8799, using PyKLIP. We report new and re-reduced spectrophotometry of HR8799 c, d, and e from H-K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting fake sources and recovering them over a range of parameters. The K1/K2 spectra for planets c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR8799e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We compare planets c, d, and e with M, L, and T-type field objects. All objects are consistent with low gravity mid-to-late L dwarfs, however, a lack of standard spectra for low gravity late L-type objects lead to poor fit for gravity. We place our results in context of atmospheric models presented in previous publications and discuss differences in the spectra of the three planets

    1–2.4 μ

    Full text link

    ROBOTIC OPERATION OF THE DAO 1.2-M TELESCOPE AND MCKELLAR SPECTROGRAPH

    No full text
    El telescopio de 1.2m DAO ha sido utilizado exitosamente par a obtener espectros astron ́omicos de modo rob ́otico desatendido durante una d ́ecada y aproximadamen te 2/3 de las noches programadas en el telescopio son utilizadas de esta manera ahora. La disponibilidad de es te tipo de operaci ́on rob ́otica ha impulsado la tasa de subscripci ́on del telescopio por aproximadamente 50% de sde que los usuarios del telescopio ya no tienen que viajar a Victoria para llevar a cabo sus programas de observa ci ́on. Se presenta un resumen del sistema rob ́otico y algunos detalles de su operaci ́on
    corecore