95 research outputs found

    Neural Advantages of Older Musicians Involve the Cerebellum: Implications for Healthy Aging Through Lifelong Musical Instrument Training

    Get PDF
    This study compared 30 older musicians and 30 age-matched non-musicians to investigate the association between lifelong musical instrument training and age-related cognitive decline and brain atrophy (musicians: mean age 70.8 years, musical experience 52.7 years; non-musicians: mean age 71.4 years, no or less than 3 years of musical experience). Although previous research has demonstrated that young musicians have larger gray matter volume (GMV) in the auditory-motor cortices and cerebellum than non-musicians, little is known about older musicians. Music imagery in young musicians is also known to share a neural underpinning [the supramarginal gyrus (SMG) and cerebellum] with music performance. Thus, we hypothesized that older musicians would show superiority to non-musicians in some of the abovementioned brain regions. Behavioral performance, GMV, and brain activity, including functional connectivity (FC) during melodic working memory (MWM) tasks, were evaluated in both groups. Behaviorally, musicians exhibited a much higher tapping speed than non-musicians, and tapping speed was correlated with executive function in musicians. Structural analyses revealed larger GMVs in both sides of the cerebellum of musicians, and importantly, this was maintained until very old age. Task-related FC analyses revealed that musicians possessed greater cerebellar-hippocampal FC, which was correlated with tapping speed. Furthermore, musicians showed higher activation in the SMG during MWM tasks; this was correlated with earlier commencement of instrumental training. These results indicate advantages or heightened coupling in brain regions associated with music performance and imagery in musicians. We suggest that lifelong instrumental training highly predicts the structural maintenance of the cerebellum and related cognitive maintenance in old age

    The practice of child and adolescent psychiatry: a survey of early-career psychiatrists in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Child and adolescent psychiatry (CAP), a subspecialty of psychiatry in Japan, is facing a serious workforce shortage. To resolve this situation, the Japanese government has organized a task force and has been working to increase psychiatrists' clinical skills to improve care for children and adolescents with mental health problems. Using an online questionnaire system, the authors have conducted a survey to investigate the perceptions, experiences, and interests of early-career psychiatrists in CAP.</p> <p>Methods</p> <p>The subjects of this study were 182 psychiatrists in Japan whose individual clinical experiences did not exceed 15 years. The authors of this study created an online questionnaire system and e-mailed the URL and login password to all subjects. Respondents anonymously answered the questions. Most questions required an answer indicating a level of agreement scored on a nine-point scale. Responding to the questionnaire was considered to constitute consent, and all respondents' privacy was carefully protected.</p> <p>Results</p> <p>The mean age and clinical psychiatric experience of the subjects were found to be 33.1 Β± 4.5 years and 5.43 Β± 3.5 years, respectively. On a nine-point scale (with nine being the highest), experience and interest in CAP measured 3.05 Β± 1.9 and 5.34 Β± 2.5, respectively; further, these two factors showed significant correlation (r = 0.437, p < 0.0001). The mean score for the early-career psychiatrists' confidence in their ability to diagnose and appropriately treat was notably low, at 3.13 Β± 1.9.</p> <p>Conclusion</p> <p>Our results demonstrated that early-career psychiatrists self-evaluated their CAP clinical experience as insufficient, and these clinicians' CAP experiences and interests correlated significantly. Therefore, in order to improve child and adolescent medical care, we need to expose young psychiatrists to sufficient CAP cases and explore the factors that could attract them to this field.</p

    The Timbre Perception Test (TPT): A new interactive musical assessment tool to measure timbre perception ability

    Get PDF
    To date, tests that measure individual differences in the ability to perceive musical timbre are scarce in the published literature.The lack of such tool limits research on how timbre, a primary attribute of sound, is perceived and processed among individuals.The current paper describes the development of the Timbre Perception Test (TPT), in which participants use a slider to reproduce heard auditory stimuli that vary along three important dimensions of timbre: envelope, spectral flux, and spectral centroid. With a sample of 95 participants, the TPT was calibrated and validated against measures of related abilities and examined for its reliability. The results indicate that a short-version (8 minutes) of the TPT has good explanatory support from a factor analysis model, acceptable internal reliability (Ξ±=.69,Ο‰t = .70), good test–retest reliability (r= .79) and substantial correlations with self-reported general musical sophistication (ρ= .63) and pitch discrimination (ρ= .56), as well as somewhat lower correlations with duration discrimination (ρ= .27), and musical instrument discrimination abilities (ρ= .33). Overall, the TPT represents a robust tool to measure an individual’s timbre perception ability. Furthermore, the use of sliders to perform a reproductive task has shown to be an effective approach in threshold testing. The current version of the TPT is openly available for research purposes

    Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism

    Get PDF
    The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation

    Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain

    Get PDF
    We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain β€œconnectome” from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS

    Genome-Wide Analyses of Exonic Copy Number Variants in a Family-Based Study Point to Novel Autism Susceptibility Genes

    Get PDF
    The genetics underlying the autism spectrum disorders (ASDs) is complex and remains poorly understood. Previous work has demonstrated an important role for structural variation in a subset of cases, but has lacked the resolution necessary to move beyond detection of large regions of potential interest to identification of individual genes. To pinpoint genes likely to contribute to ASD etiology, we performed high density genotyping in 912 multiplex families from the Autism Genetics Resource Exchange (AGRE) collection and contrasted results to those obtained for 1,488 healthy controls. Through prioritization of exonic deletions (eDels), exonic duplications (eDups), and whole gene duplication events (gDups), we identified more than 150 loci harboring rare variants in multiple unrelated probands, but no controls. Importantly, 27 of these were confirmed on examination of an independent replication cohort comprised of 859 cases and an additional 1,051 controls. Rare variants at known loci, including exonic deletions at NRXN1 and whole gene duplications encompassing UBE3A and several other genes in the 15q11–q13 region, were observed in the course of these analyses. Strong support was likewise observed for previously unreported genes such as BZRAP1, an adaptor molecule known to regulate synaptic transmission, with eDels or eDups observed in twelve unrelated cases but no controls (pβ€Š=β€Š2.3Γ—10βˆ’5). Less is known about MDGA2, likewise observed to be case-specific (pβ€Š=β€Š1.3Γ—10βˆ’4). But, it is notable that the encoded protein shows an unexpectedly high similarity to Contactin 4 (BLAST E-valueβ€Š=β€Š3Γ—10βˆ’39), which has also been linked to disease. That hundreds of distinct rare variants were each seen only once further highlights complexity in the ASDs and points to the continued need for larger cohorts
    • …
    corecore