5 research outputs found

    Light-Emitting Diode Therapy in Chemotherapy-Induced Mucositis

    No full text
    Background and Objective: Mucositis is the most common oral complication of cancer chemotherapy, which causes pain on mastication and swallowing, impairs patients' ability to eat and take oral drugs and may determine interruption of the treatment. The aim of this study was to evaluate the effect of light-emitting diode (LED) therapy on chemotherapy-induced mucositis in hamsters.Study Design/Materials and Methods: Animals of both experimental (Group 1; n = 32) and positive control (Group II; n = 32) groups received intraperitoneal injections of 5-fluorouracil on days 0 and 2. All animals had their right and left cheek pouch irritated by superficial scratching on days 3 and 4. In Group I, LED irradiation (630 nm +/- 10 nm, 160 mW, 12 J/cm(2)) was applied during 37.5 seconds at days 3, 4, 6, 8, 10, 12, and 14. In Group II, mucositis was induced, but LED therapy was not performed. The oral mucosa was photographed from day 4 to 14 at 2-day intervals. Photographs were randomly scored according to the severity of induced mucositis (0 to 5). In the negative control group (Group III; n = 6), no mucositis was induced. Biopsies of the cheek pouches of 8 animals (Group I and Group II) were surgically obtained on days 5, 9, 13 and 15 and processed for histological examination.Results: The statistical analysis showed significant differences between irradiated and non-irradiated groups (P < 0.05). However, muscular degeneration was observed in 18% of the samples of Group I.Conclusion: It may be concluded that the LED therapy protocol established for this in vivo study was effective in reducing the severity of oral mucositis, although the oral lesions were not completely prevented. Lasers Surg. Med. 40:625-633, 2008. (c) 2008Wiley-Liss, Inc.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Mechanical and biological characterization of resin-modified glass-ionomer cement containing doxycycline hyclate

    No full text
    Objectives: To characterize the mechanical and biological properties of a resin-modified glass ionomer cement (RMGIC) containing doxycycline'hyclate.Methods: The antibacterial effect of RMGIC containing 1.5, 3.0 and 4.5% doxycycline hyclate was assessed using two experiments - agar diffusion test for 24 h and biofilm assay for 24 h and 7 days - against some cariogenic bacteria. Briefly, base layers of BHI agar and 300 mu L of each inoculum were prepared in Petri dishes with 6 wells that were completely filled with materials. After 24 h incubation, zones of bacterial growth inhibition were measured using a digital caliper. Biofilm assays were conducted using RMGIC specimens immersed in 24-well plates containing the inoculum in BHI broth. After 24 h and 7 days, each specimen were removed, vortexed and the suspension diluted and inoculated in BHI plates for subsequent bacterial counting. Cytotoxicity tests used 50 specimens made in sterilized metal molds, including Vitrebond as positive control. Extracts from every specimen were applied on the MDPC-23 odontoblast-like cells for 24 h. The MIT assay and SEM evaluation determined cell metabolism and morphology, respectively. 80 cylindrical specimens were made from the previously cited groups, and were submitted to testing with a universal testing machine (Instron 4411) using a crosshead speed of 1.0 mm/min for compressive strength and 0.5 mm/mm for diametral tensile strength, respectively. Data from antibacterial and cytotoxic effects, and mechanical properties were submitted to appropriated statistical tests.Results: All tested groups showed growth inhibition of all tested strains (p < 0.05) in 24 h for both microbiological tests, but only 4.5% doxycycline have antibacterial effect after 7 days. None of doxycycline concentrations caused toxic effect to the MDPC-23 cells or presenting alterations to mechanical properties.Conclusion: The incorporation of up to 4.5% doxycycline hyclate into RMGIC inhibits important oral microorganisms, without modifying biological and mechanical characteristics of the dental material, suggesting a new alternative for the treatment of dental caries. (C) 2011 Elsevier Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore