156 research outputs found

    The effect of aging and cardiorespiratory fitness on the lung diffusing capacity response to exercise in healthy humans

    Get PDF
    Aging is associated with deterioration in the structure and function of the pulmonary circulation. We characterized the lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (Dm(CO)), and pulmonary-capillary blood volume (V(C)) response to discontinuous incremental exercise at 25, 50, 75, and 90% of peak work (Wpeak) in four groups: 1) Young [27 ± 3 y, maximal oxygen consumption (V̇O₂max) 110 ± 18% age-predicted]; 2) Young Highly-Fit (27 ± 3 y, V̇O₂max 147 ± 8% age-predicted); 3) Old (69 ± 5 y, V̇O₂max 116 ± 13% age-predicted); and 4) Old Highly-Fit (65 ± 5 y, V̇O₂max 162 ± 18% age-predicted). At rest and at 90% Wpeak, DLCO, Dm(CO), and VC were decreased with age. At 90% Wpeak, DLCO, Dm(CO) and VC were greater in Old Highly-Fit vs. Old adults. The slope of the DLCO-cardiac output (Q̇) relationship from rest to end-exercise at 90% Wpeak was not different between Young, Young Highly-Fit, Old and Old Highly-Fit (1.35 vs. 1.44 vs. 1.10 vs. 1.35 mlCO·mmHg⁻¹·Lblood⁻¹, P = 0.388), with no evidence of a plateau in this relationship during exercise; this was also true for Dm(CO)-Q̇ and V(C)-Q̇. V̇O2max was positively correlated with: 1) DLCO, Dm(CO), and V(C) at rest; 2) the rest to end-exercise change in DLCO, Dm(CO), and V(C). In conclusion, these data suggest that despite the age-associated deterioration in the structure and function of the pulmonary circulation, expansion of the pulmonary capillary network does not become limited during exercise in healthy individuals regardless of age or cardiorespiratory fitness level

    Outcomes of patients hospitalized for acute decompensated heart failure: does nesiritide make a difference?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nesiritide is indicated in the treatment of acute decompensated heart failure. However, a recent meta-analysis reported that nesiritide may be associated with an increased risk of death. Our goal was to evaluate the impact of nesiritide treatment on four outcomes among adults hospitalized for congestive heart failure (CHF) during a three-year period.</p> <p>Methods</p> <p>CHF patients discharged between 1/1/2002 and 12/31/2004 from the Adventist Health System, a national, not-for-profit hospital system, were identified. 25,330 records were included in this retrospective study. Nesiritide odds ratios (OR) were adjusted for various factors including nine medications and/or an APR-DRG severity score.</p> <p>Results</p> <p>Initially, treatment with nesiritide was found to be associated with a 59% higher odds of hospital mortality (Unadjusted OR = 1.59, 95% confidence interval [CI]: 1.31–1.93). Adjusting for race, low economic status, APR-DRG severity of illness score, and the receipt of nine medications yielded a nonsignificant nesiritide OR of 1.07 for hospital death (95% CI: 0.85–1.35). Nesiritide was positively associated with the odds of prolonged length of stay (all adjusted ORs = 1.66) and elevated pharmacy cost (all adjusted ORs > 5).</p> <p>Conclusion</p> <p>In this observational study, nesiritide therapy was associated with increased length of stay and pharmacy cost, but not hospital mortality. Randomized trials are urgently needed to better define the efficacy, if any, of nesiritide in the treatment of decompensated heart failure.</p

    The blood transfer conductance for nitric oxide: infinite vs. finite θNO

    Get PDF
    Whether the specific blood transfer conductance for nitric oxide (NO) with hemoglobin (θNO) is finite or infinite is controversial but important in the calculation of alveolar capillary membrane conductance (DmCO) and pulmonary capillary blood volume (VC) from values of lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO). In this review, we discuss the background associated with θNO, explore the resulting values of DmCO and VC when applying either assumption, and investigate the mathematical underpinnings of DmCO and VC calculations. In general, both assumptions yield reasonable rest and exercise DmCO and VC values. However, the finite θNO assumption demonstrates increasing VC, but not DmCO, with submaximal exercise. At relatively high, but physiologic, DLNO/DLCO ratios both assumptions can result in asymptotic behavior for VC values, and under the finite θNO assumption, DmCO values. In conclusion, we feel that the assumptions associated with a finite θNO require further in vivo validation against an established method before widespread research and clinical use

    Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure

    Get PDF
    Venous gas bubbles occur in recreational SCUBA divers in the absence of decompression sickness, forming venous gas emboli (VGE) which are trapped within pulmonary circulation and cleared by the lung without overt pathology. We hypothesized that asymptomatic VGE would transiently increase ventilation-perfusion mismatch due to their occlusive effects within the pulmonary circulation. Two sets of healthy volunteers (n = 11, n = 12) were recruited to test this hypothesis with a single recreational ocean dive or a baro-equivalent dry hyperbaric dive. Pulmonary studies (intrabreath VA/Q (iV/Q), alveolar dead space, and FVC) were conducted at baseline and repeat 1- and 24-h after the exposure. Contrary to our hypothesis VA/Q mismatch was decreased 1-h post-SCUBA dive (iV/Q slope 0.023 ± 0.008 ml−1 at baseline vs. 0.010 ± 0.005 NS), and was significantly reduced 24-h post-SCUBA dive (0.000 ± 0.005, p < 0.05), with improved VA/Q homogeneity inversely correlated to dive severity. No changes in VA/Q mismatch were observed after the chamber dive. Alveolar dead space decreased 24-h post-SCUBA dive (78 ± 10 ml at baseline vs. 56 ± 5, p < 0.05), but not 1-h post dive. FVC rose 1-h post-SCUBA dive (5.01 ± 0.18 l vs. 5.21 ± 0.26, p < 0.05), remained elevated 24-h post SCUBA dive (5.06 ± 0.2, p < 0.05), but was decreased 1-hr after the chamber dive (4.96 ± 0.31 L to 4.87 ± 0.32, p < 0.05). The degree of VA/Q mismatch in the lung was decreased following recreational ocean dives, and was unchanged following an equivalent air chamber dive, arguing against an impact of VGE on the pulmonary circulation

    Vasodilators in the treatment of acute heart failure: what we know, what we don’t

    Get PDF
    Although we have recently witnessed substantial progress in management and outcome of patients with chronic heart failure, acute heart failure (AHF) management and outcome have not changed over almost a generation. Vasodilators are one of the cornerstones of AHF management; however, to a large extent, none of those currently used has been examined by large, placebo-controlled, non-hemodynamic monitored, prospective randomized studies powered to assess the effects on outcomes, in addition to symptoms. In this article, we will discuss the role of vasodilators in AHF trying to point out which are the potentially best indications to their administration and which are the pitfalls which may be associated with their use. Unfortunately, most of this discussion is only partially evidence based due to lack of appropriate clinical trials. In general, we believe that vasodilators should be administered early to AHF patients with normal or high blood pressure (BP) at presentation. They should not be administered to patients with low BP since they may cause hypotension and hypoperfusion of vital organs, leading to renal and/or myocardial damage which may further worsen patients’ outcome. It is not clear whether vasodilators have a role in either patients with borderline BP at presentation (i.e., low-normal) or beyond the first 1–2 days from presentation. Given the limitations of the currently available clinical trial data, we cannot recommend any specific agent as first line therapy, although nitrates in different formulations are still the most widely used in clinical practice

    The Phrenic Component of Acute Schizophrenia – A Name and Its Physiological Reality

    Get PDF
    Decreased heart rate variability (HRV) was shown for unmedicated patients with schizophrenia and their first-degree relatives, implying genetic associations. This is known to be an important risk factor for increased cardiac mortality in other diseases. The interaction of cardio-respiratory function and respiratory physiology has never been investigated in the disease although it might be closely related to the pattern of autonomic dysfunction. We hypothesized that increased breathing rates and reduced cardio-respiratory coupling in patients with acute schizophrenia would be associated with low vagal function. We assessed variability of breathing rates and depth, HRV and cardio-respiratory coupling in patients, their first-degree relatives and controls at rest. Control subjects were investigated a second time by means of a stress task to identify stress-related changes of cardio-respiratory function. A total of 73 subjects were investigated, consisting of 23 unmedicated patients, 20 healthy, first-degree relatives and 30 control subjects matched for age, gender, smoking and physical fitness. The LifeShirt®, a multi-function ambulatory device, was used for data recording (30 minutes). Patients breathe significantly faster (p<.001) and shallower (p<.001) than controls most pronouncedly during exhalation. Patients' breathing is characterized by a significantly increased amount of middle- (p<.001), high- (p<.001), and very high frequency fluctuations (p<.001). These measures correlated positively with positive symptoms as assessed by the PANSS scale (e.g., middle frequency: r = 521; p<.01). Cardio-respiratory coupling was reduced in patients only, while HRV was decreased in patients and healthy relatives in comparison to controls. Respiratory alterations might reflect arousal in acutely ill patients, which is supported by comparable physiological changes in healthy subjects during stress. Future research needs to further investigate these findings with respect to their physiological consequences for patients. These results are invaluable for researchers studying changes of biological signals prone to the influence of breathing rate and rhythm (e.g., functional imaging)

    Reporting bias in medical research - a narrative review

    Get PDF
    Reporting bias represents a major problem in the assessment of health care interventions. Several prominent cases have been described in the literature, for example, in the reporting of trials of antidepressants, Class I anti-arrhythmic drugs, and selective COX-2 inhibitors. The aim of this narrative review is to gain an overview of reporting bias in the medical literature, focussing on publication bias and selective outcome reporting. We explore whether these types of bias have been shown in areas beyond the well-known cases noted above, in order to gain an impression of how widespread the problem is. For this purpose, we screened relevant articles on reporting bias that had previously been obtained by the German Institute for Quality and Efficiency in Health Care in the context of its health technology assessment reports and other research work, together with the reference lists of these articles

    Whole Body Periodic Acceleration Is an Effective Therapy to Ameliorate Muscular Dystrophy in mdx Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway
    corecore