845 research outputs found

    SL(2,R)SL(2,R) symmetry and quasi-normal modes in the BTZ black hole

    Full text link
    With the help of two new intrinsic tensor fields associated with the SL(2,R)SL(2,R) quadratic Casimir of Killing fields, we uncover the SL(2,R)SL(2,R) symmetry satisfied by the solutions to the equations of motion for various fields in the BTZ black hole in a uniform way by performing tensor and spinor analysis without resorting to any specific coordinate system. Then with the standard algebraic method developed recently, we determine the quasi-normal modes for various fields in the BTZ black hole. As a result, the quasi-normal modes are given by the infinite tower of descendants of the chiral highest weight mode, which is in good agreement with the previous analytic result obtained by exactly solving equations of motion instead.Comment: JHEP style, 1+13 pages, version to appear in JHE

    Management and efficacy of intensified insulin therapy starting in outpatients

    Get PDF
    Diabetic patients under multiple injection insulin therapy (i.e., intensified insulin therapy, IIT) usually start this treatment during hospitalization. We report here on the logistics, efficacy, and safety of IIT, started in outpatients. Over 8 months, 52 type I and type II diabetics were followed up whose insulin regimens consecutively had been changed from conventional therapy to IIT. Two different IIT strategies were compared: free mixtures of regular and intermediate (12 hrs)-acting insulin versus the basal and prandial insulin treatment with preprandial injections of regular insulin, and ultralente (24 hrs-acting) or intermediate insulin for the basal demand. After 8 months HbA1 levels had decreased from 10.6%±2.4% to 8.0%±1.3% (means±SD). There was no difference between the two regimens with respect to metabolic control; but type II patients maintained the lowered HbA1 levels better than type I patients. Only two patients were hospitalized during the follow-up time because of severe hypoglycemia. An increase of body weight due to the diet liberalization during IIT became a problem in one-third of the patients. Our results suggest that outpatient initiation of IIT is safe and efficacious with respect to near-normoglycemic control. Weight control may become a problem in IIT patients

    The dynamics of apparent horizons in Robinson-Trautman spacetimes

    Full text link
    We present an alternative scheme of finding apparent horizons based on spectral methods applied to Robinson-Trautman spacetimes. We have considered distinct initial data such as representing the spheroids of matter and the head-on collision of two non-rotating black holes. The evolution of the apparent horizon is presented. We have obtained in some cases a mass gap between the final Bondi and apparent horizon masses, whose implications were briefly commented in the light of the thermodynamics of black holes.Comment: 9 pages, 7 figure

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Mass and Angular Momentum in General Relativity

    Full text link
    We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate quasi-local notions of mass and angular momentum associated with extended but finite spacetime domains are presented, together with some illustrations of the relations between total and quasi-local quantities in the particular context of black hole spacetimes. This article is not intended to be a rigorous and exhaustive review of the subject, but rather an invitation to the topic for non-experts. In this sense we follow essentially the expositions in Szabados 2004, Gourgoulhon 2007, Poisson 2004 and Wald 84, and refer the reader interested in further developments to the existing literature, in particular to the excellent and comprehensive review by Szabados (2004).Comment: 41 pages. Notes based on the lecture given at the C.N.R.S. "School on Mass" (June 2008) in Orleans, France. To appear as proceedings in the book "Mass and Motion in General Relativity", eds. L. Blanchet, A. Spallicci and B. Whiting. Some comments and references added

    Are proton pump inhibitors the first choice for acute treatment of gastric ulcers? A meta analysis of randomized clinical trials

    Get PDF
    BACKGROUND: Gastric ulcers are a frequent problem in the United States. Proton pump inhibitors have been shown to increase healing rates and improve clinical symptoms. The objective of this study is to compare gastric ulcer healing rates for patients treated with a proton pump inhibitor (PPI) (omeprazole, rabeprazole, pantoprazole, or lansoprazole), an histamine 2- receptor antagonist (ranitidine) or placebo. METHODS: A literature search was conducted to identify randomized, controlled clinical trials that included a PPI in at least one treatment arm and assessed the gastric ulcer healing rates endoscopically. The healing rates were estimated for each treatment at specific time points, and Rate Ratios (RR) and 95% confidence intervals (CI) were estimated for each trial. RESULTS: Sixteen trials met the inclusion criteria: four compared a PPI versus placebo, nine compared a PPI versus ranitidine (no trials of rabeprazole versus ranitidine met the inclusion criteria), and three compared a newer PPI (lansoprazole, pantoprazole or rabeprazole) versus omeprazole. In relation to ranitidine, the pooled RR of PPIs (lansoprazole, omeprazole and pantoprazole) was 1.33 (95% CI 1.24 to 1.42) at four weeks. In each trial, greater improvement in the studied clinical symptoms was found with the newer PPIs (rabeprazole, pantoprazole and lansoprazole) when compared to omeprazole. CONCLUSION: In this study treatment with PPIs resulted in higher healing rates than ranitidine or placebo. This evidence suggests that the first choice for gastric ulcer treatment for the greater relief of symptoms is one of the newer PPIs

    Rapid Implementation of an Integrated Large-Scale HIV Counseling and Testing, Malaria, and Diarrhea Prevention Campaign in Rural Kenya

    Get PDF
    BACKGROUND: Integrated disease prevention in low resource settings can increase coverage, equity and efficiency in controlling high burden infectious diseases. A public-private partnership with the Ministry of Health, CDC, Vestergaard Frandsen and CHF International implemented a one-week integrated multi-disease prevention campaign. METHOD: Residents of Lurambi, Western Kenya were eligible for participation. The aim was to offer services to at least 80% of those aged 15-49. 31 temporary sites in strategically dispersed locations offered: HIV counseling and testing, 60 male condoms, an insecticide-treated bednet, a household water filter for women or an individual filter for men, and for those testing positive, a 3-month supply of cotrimoxazole and referral for follow-up care and treatment. FINDINGS: Over 7 days, 47,311 people attended the campaign with a 96% uptake of the multi-disease preventive package. Of these, 99.7% were tested for HIV (87% in the target 15-49 age group); 80% had previously never tested. 4% of those tested were positive, 61% were women (5% of women and 3% of men), 6% had median CD4 counts of 541 cell/µL (IQR; 356, 754). 386 certified counselors attended to an average 17 participants per day, consistent with recommended national figures for mass campaigns. Among women, HIV infection varied by age, and was more likely with an ended marriage (e.g. widowed vs. never married, OR.3.91; 95% CI. 2.87-5.34), and lack of occupation. In men, quantitatively stronger relationships were found (e.g. widowed vs. never married, OR.7.0; 95% CI. 3.5-13.9). Always using condoms with a non-steady partner was more common among HIV-infected women participants who knew their status compared to those who did not (OR.5.4 95% CI. 2.3-12.8). CONCLUSION: Through integrated campaigns it is feasible to efficiently cover large proportions of eligible adults in rural underserved communities with multiple disease preventive services simultaneously achieving various national and international health development goals

    Isolated and dynamical horizons and their applications

    Get PDF
    Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modeled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity; suggested a phenomenological model for hairy black holes; provided novel techniques to extract physics from numerical simulations; and led to new laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
    corecore