666 research outputs found

    Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.

    Get PDF
    Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    Breakdown of the adiabatic limit in low dimensional gapless systems

    Get PDF
    It is generally believed that a generic system can be reversibly transformed from one state into another by sufficiently slow change of parameters. A standard argument favoring this assertion is based on a possibility to expand the energy or the entropy of the system into the Taylor series in the ramp speed. Here we show that this argumentation is only valid in high enough dimensions and can break down in low-dimensional gapless systems. We identify three generic regimes of a system response to a slow ramp: (A) mean-field, (B) non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp speed going to zero and the system size going to infinity do not commute and the adiabatic process does not exist in the thermodynamic limit. We support our results by numerical simulations. Our findings can be relevant to condensed-matter, atomic physics, quantum computing, quantum optics, cosmology and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally submitted version

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Dissociation between the Activity of the Right Middle Frontal Gyrus and the Middle Temporal Gyrus in Processing Semantic Priming

    Get PDF
    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia “oink” as the prime and the referent “pig” as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target “pig” (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target “oink” (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing

    Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum

    Get PDF
    The rhoptry of the malaria parasite Plasmodium falciparum is an unusual secretory organelle that is thought to be related to secretory lysosomes in higher eukaryotes. Rhoptries contain an extensive collection of proteins that participate in host cell invasion and in the formation of the parasitophorous vacuole, but little is known about sorting signals required for rhoptry protein targeting. Using green fluorescent protein chimeras and in vitro pull-down assays, we performed an analysis of the signals required for trafficking of the rhoptry protein RAP1. We provide evidence that RAP1 is escorted to the rhoptry via an interaction with the glycosylphosphatidyl inositol-anchored rhoptry protein RAMA. Once within the rhoptry, RAP1 contains distinct signals for localisation within a sub-compartment of the organelle and subsequent transfer to the parasitophorous vacuole after invasion. This is the first detailed description of rhoptry trafficking signals in Plasmodium

    A prospective cohort study of long-term cognitive changes in older Medicare beneficiaries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Promoting cognitive health and preventing its decline are longstanding public health goals, but long-term changes in cognitive function are not well-documented. Therefore, we first examined long-term changes in cognitive function among older Medicare beneficiaries in the Survey on Assets and Health Dynamics among the Oldest Old (AHEAD), and then we identified the risk factors associated with those changes in cognitive function.</p> <p>Methods</p> <p>We conducted a secondary analysis of a prospective, population-based cohort using baseline (1993-1994) interview data linked to 1993-2007 Medicare claims to examine cognitive function at the final follow-up interview which occurred between 1995-1996 and 2006-2007. Besides traditional risk factors (i.e., aging, age, race, and education) and adjustment for baseline cognitive function, we considered the reason for censoring (entrance into managed care or death), and post-baseline continuity of care and major health shocks (hospital episodes). Residual change score multiple linear regression analysis was used to predict cognitive function at the final follow-up using data from telephone interviews among 3,021 to 4,251 (sample size varied by cognitive outcome) baseline community-dwelling self-respondents that were ≥ 70 years old, not in managed Medicare, and had at least one follow-up interview as self-respondents. Cognitive function was assessed using the 7-item Telephone Interview for Cognitive Status (TICS-7; general mental status), and the 10-item immediate and delayed (episodic memory) word recall tests.</p> <p>Results</p> <p>Mean changes in the number of correct responses on the TICS-7, and 10-item immediate and delayed word recall tests were -0.33, -0.75, and -0.78, with 43.6%, 54.9%, and 52.3% declining and 25.4%, 20.8%, and 22.9% unchanged. The main and most consistent risks for declining cognitive function were the baseline values of cognitive function (reflecting substantial regression to the mean), aging (a strong linear pattern of increased decline associated with greater aging, but with diminishing marginal returns), older age at baseline, dying before the end of the study period, lower education, and minority status.</p> <p>Conclusions</p> <p>In addition to aging, age, minority status, and low education, substantial and differential risks for cognitive change were associated with sooner vs. later subsequent death that help to clarify the terminal drop hypothesis. No readily modifiable protective factors were identified.</p
    corecore