11,301 research outputs found

    Parent Resource Packet - A Guide for New Parents

    Get PDF
    PDF pages: 8

    The String Tension in Two Dimensional Gauge Theories

    Full text link
    We review and elaborate on properties of the string tension in two-dimensional gauge theories. The first model we consider is massive QED in the mem\ll e limit. We evaluate the leading string tension both in the fermionic and bosonized descriptions. We discuss the next to leading corrections in m/em/e. The next-to-leading terms in the long distance behavior of the quark-antiquark potential, are evaluated in a certain region of external versus dynamical charges. The finite temperature behavior is also determined. In QCD2QCD_2 we review the results for the string tension of quarks in cases with dynamical quarks in the fundamental, adjoint, symmetric and antisymmetric representations. The screening nature of SYM2SYM_2 is re-derived.Comment: 25 pages, Latex. v2: several changes, mainly in section

    A Causal Source which Mimics Inflation

    Get PDF
    How unique are the inflationary predictions for the cosmic microwave anisotropy pattern? In this paper, it is asked whether an arbitrary causal source for perturbations in the standard hot big bang could effectively mimic the predictions of the simplest inflationary models. A surprisingly simple example of a `scaling' causal source is found to closely reproduce the inflationary predictions. This letter extends the work of a previous paper (ref. 6) to a full computation of the anisotropy pattern, including the Sachs Wolfe integral. I speculate on the possible physics behind such a source.Comment: 4 pages, RevTex, 3 figure

    Financial contagion in real economy: The key role of policy uncertainty

    Get PDF
    © 2020 John Wiley & Sons Ltd This paper studies the spread of the Subprime Crisis and the European Sovereign Debt Crisis from Eurozone countries to the real economy by examining 10 sectors in major developed and emerging stock markets. First, we employ Cappiello et al., Journal of Financial Economics, 2006, 4, 537–572 model and copula functions to detect and cross-check the correlations and the contagion thereafter. Second, we uncover evidence of correlation behaviour between policy uncertainty indexes and stock market returns. The results demonstrate that no country and sector was immune to spillover effects, highlighting the limited effectiveness of policy makers for both the Subprime Crisis and the European Sovereign Debt Crisis. The empirical application provides evidence of significant volatility and tail dependence from the financial sector to many real sectors in the U.S. economy. Additionally, there is clear evidence that certain sectors, particularly Healthcare, Telecommunications, Utilities and Technology, were less severely affected by the crisis, as observed by Baur, Journal of Banking & Finance, 2011, 36, 2680–2692

    Finding Principal Null Direction for Numerical Relativists

    Full text link
    We present a new method for finding principal null directions (PNDs). Because our method assumes as input the intrinsic metric and extrinsic curvature of a spacelike hypersurface, it should be particularly useful to numerical relativists. We illustrate our method by finding the PNDs of the Kastor-Traschen spacetimes, which contain arbitrarily many Q=MQ=M black holes in a de Sitter back-ground.Comment: 10 pages, LaTeX style, WU-AP/38/93. Figures are available (hard copies) upon requests [[email protected] (H.Shinkai)

    Can one detect a non-smooth null infinity?

    Get PDF
    It is shown that the precession of a gyroscope can be used to elucidate the nature of the smoothness of the null infinity of an asymptotically flat spacetime (describing an isolated body). A model for which the effects of precession in the non-smooth null infinity case are of order r2lnrr^{-2}\ln r is proposed. By contrast, in the smooth version the effects are of order r3r^{-3}. This difference should provide an effective criterion to decide on the nature of the smoothness of null infinity.Comment: 6 pages, to appear in Class. Quantum Gra

    Integration of the Friedmann equation for universes of arbitrary complexity

    Full text link
    An explicit and complete set of constants of the motion are constructed algorithmically for Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) models consisting of an arbitrary number of non-interacting species. The inheritance of constants of the motion from simpler models as more species are added is stressed. It is then argued that all FLRW models admit what amounts to a unique candidate for a gravitational epoch function (a dimensionless scalar invariant derivable from the Riemann tensor without differentiation which is monotone throughout the evolution of the universe). The same relations that lead to the construction of constants of the motion allow an explicit evaluation of this function. In the simplest of all models, the Λ\LambdaCDM model, it is shown that the epoch function exists for all models with Λ>0\Lambda > 0, but for almost no models with Λ0\Lambda \leq 0.Comment: Final form to appear in Physical Review D1

    Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector

    Get PDF
    Climatic conditions, population density, geography, and settlement structure all have a strong influence on the heating and cooling demand of a country, and thus on resulting energy use and greenhouse gas emissions. In particular, the choice of heating or cooling system is influenced by available energy distribution infrastructure, where the cost of such infrastructure is strongly related to the spatial density of the demand. As such, a better estimation of the spatial and temporal distribution of demand is desirable to enhance the accuracy of technology assessment. This paper presents a Geographical Information System methodology combining the hourly NASA MERRA-2 global temperature dataset with spatially resolved population data and national energy balances to determine global high-resolution heat and cooling energy density maps. A set of energy density bands is then produced for each country using K-means clustering. Finally, demand profiles representing diurnal and seasonal variations in each band are derived to capture the temporal variability. The resulting dataset for 165 countries, published alongside this article, is designed to be integrated into a new integrated assessment model called MUSE (ModUlar energy systems Simulation Environment)but can be used in any national heat or cooling technology analysis. These demand profiles are key inputs for energy planning as they describe demand density and its fluctuations via a consistent method for every country where data is available
    corecore