14,375 research outputs found

    Economic Consequences of Health Status: A Review of the Evidence

    Get PDF
    The correlation between health and economic performance is extremely robust across communities and over time. Many factors exogenous to income play an important role in determining health status, including a number of geographical, environmental, and evolutionary factors. This suggests the existence of simultaneous impacts of health on wealth and wealth on health. Potential health impacts on national economic performance are explored, and some important unanswered questions are identified.health, economic growth, human capital

    Parent Resource Packet - A Guide for New Parents

    Get PDF
    PDF pages: 8

    The Schwinger Model on a circle: relation between Path Integral and Hamiltonian approaches

    Full text link
    We solve the massless Schwinger model exactly in Hamiltonian formalism on a circle. We construct physical states explicitly and discuss the role of the spectral flow and nonperturbative vacua. Different thermodynamical correlation functions are calculated and after performing the analytical continuation are compared with the corresponding expressions obtained for the Schwinger model on the torus in Euclidean Path Integral formalism obtained before.Comment: 40 page

    Nonparametric Transient Classification using Adaptive Wavelets

    Full text link
    Classifying transients based on multi band light curves is a challenging but crucial problem in the era of GAIA and LSST since the sheer volume of transients will make spectroscopic classification unfeasible. Here we present a nonparametric classifier that uses the transient's light curve measurements to predict its class given training data. It implements two novel components: the first is the use of the BAGIDIS wavelet methodology - a characterization of functional data using hierarchical wavelet coefficients. The second novelty is the introduction of a ranked probability classifier on the wavelet coefficients that handles both the heteroscedasticity of the data in addition to the potential non-representativity of the training set. The ranked classifier is simple and quick to implement while a major advantage of the BAGIDIS wavelets is that they are translation invariant, hence they do not need the light curves to be aligned to extract features. Further, BAGIDIS is nonparametric so it can be used for blind searches for new objects. We demonstrate the effectiveness of our ranked wavelet classifier against the well-tested Supernova Photometric Classification Challenge dataset in which the challenge is to correctly classify light curves as Type Ia or non-Ia supernovae. We train our ranked probability classifier on the spectroscopically-confirmed subsample (which is not representative) and show that it gives good results for all supernova with observed light curve timespans greater than 100 days (roughly 55% of the dataset). For such data, we obtain a Ia efficiency of 80.5% and a purity of 82.4% yielding a highly competitive score of 0.49 whilst implementing a truly "model-blind" approach to supernova classification. Consequently this approach may be particularly suitable for the classification of astronomical transients in the era of large synoptic sky surveys.Comment: 14 pages, 8 figures. Published in MNRA

    A note on the peeling theorem in higher dimensions

    Full text link
    We demonstrate the ``peeling property'' of the Weyl tensor in higher dimensions in the case of even dimensions (and with some additional assumptions), thereby providing a first step towards understanding of the general peeling behaviour of the Weyl tensor, and the asymptotic structure at null infinity, in higher dimensions.Comment: 5 pages, to appear in Class. Quantum Gra

    Adhesion and electronic structure of graphene on hexagonal boron nitride substrates

    Get PDF
    We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for different crystallographic stacking configurations and show that the interlayer bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to lead to stacking disorder and moir\'e structures. Band structure calculations reveal substrate induced mass terms in graphene which change their sign with the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low energy electronic states in the moir\'e structures are discussed. We find that the absolute band gaps in the moir\'e structures are at least an order of magnitude smaller than the maximum local values of the mass term. Our results are in agreement with recent STM experiments.Comment: 8 pages, 8 figures, revised and extended version, to appear in Phys. Rev.

    Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magneto-transport study

    Full text link
    The superconducting transition temperature, Tc, of the SrTiO3/LaAlO3 interface was varied by the electric field effect. The anisotropy of the upper critical field and the normal state magneto-transport were studied as a function of gate voltage. The spin-orbit coupling energy is extracted. This tunable energy scale is used to explain the strong gate dependence of the mobility and of the anomalous Hall signal observed. The spin-orbit coupling energy follows Tc for the electric field range under study
    corecore