7,485 research outputs found
Quantum Hall to Insulator Transition in the Bilayer Quantum Hall Ferromagnet
We describe a new phase transition of the bilayer quantum Hall ferromagnet at
filling fraction . In the presence of static disorder (modeled by a
periodic potential), bosonic spinons can undergo a superfluid-insulator
transition while preserving the ferromagnetic order. The Mott insulating phase
has an emergent U(1) photon, and the transition is between Higgs and Coulomb
phases of this photon. Physical consequences for charge and counterflow
conductivity, and for interlayer tunneling conductance in the presence of
quenched disorder are discussed.Comment: 4 pages, no figure
Metallic spin glasses
Recent work on the zero temperature phases and phase transitions of strongly
random electronic system is reviewed. The transition between the spin glass and
quantum paramagnet is examined, for both metallic and insulating systems.
Insight gained from the solution of infinite range models leads to a quantum
field theory for the transition between a metallic quantum paramagnetic and a
metallic spin glass. The finite temperature phase diagram is described and
crossover functions are computed in mean field theory. A study of fluctuations
about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference
on Non-Fermi liquids, 25 pages, requires IOP style file
Putting competing orders in their place near the Mott transition
We describe the localization transition of superfluids on two-dimensional
lattices into commensurate Mott insulators with average particle density p/q
(p, q relatively prime integers) per lattice site. For bosons on the square
lattice, we argue that the superfluid has at least q degenerate species of
vortices which transform under a projective representation of the square
lattice space group (a PSG). The formation of a single vortex condensate
produces the Mott insulator, which is required by the PSG to have density wave
order at wavelengths of q/n lattice sites (n integer) along the principle axes;
such a second-order transition is forbidden in the Landau-Ginzburg-Wilson
framework. We also discuss the superfluid-insulator transition in the direct
boson representation, and find that an interpretation of the quantum
criticality in terms of deconfined fractionalized bosons is only permitted at
special values of q for which a permutative representation of the PSG exists.
We argue (and demonstrate in detail in a companion paper: L. Balents et al.,
cond-mat/0409470) that our results apply essentially unchanged to electronic
systems with short-range pairing, with the PSG determined by the particle
density of Cooper pairs. We also describe the effect of static impurities in
the superfluid: the impurities locally break the degeneracy between the q
vortex species, and this induces density wave order near each vortex. We
suggest that such a theory offers an appealing rationale for the local density
of states modulations observed by Hoffman et al. (cond-mat/0201348) in STM
studies of the vortex lattice of BSCCO, and allows a unified description of the
nucleation of density wave order in zero and finite magnetic fields. We note
signatures of our theory that may be tested by future STM experiments.Comment: 35 pages, 16 figures; (v2) part II is cond-mat/0409470; (v3) added
new appendix and clarifying remarks; (v4) corrected typo
4D-XY quantum criticality in a doped Mott insulator
A new phenomenology is proposed for the superfluid density of strongly
underdoped cuprate superconductors based on recent data for ultra-clean single
crystals of YBCO. The data feature a puzzling departure from Uemura scaling and
a decline of the slope as the T_c = 0 quantum critical point is approached. We
show that this behavior can be understood in terms of the renormalization of
quasiparticle effective charge by quantum fluctuations of the superconducting
phase as described by a (3+1)-dimensional XY model. We calculate the
renormalization of the superfluid density and its slope, explain the new
phenomenology, and predict its eventual demise close to the QCP.Comment: Version published in PRL. For additional info and related work visit
http://www.physics.ubc.ca/~fran
Bridging the Testing Speed Gap: Design for Delay Testability
The economic testing of high-speed digital ICs is becoming increasingly problematic. Even advanced, expensive testers are not always capable of testing these ICs because of their high-speed limitations. This paper focuses on a design for delay testability technique such that high-speed ICs can be tested using inexpensive, low-speed ATE. Also extensions for possible full BIST of delay faults are addresse
A low-speed BIST framework for high-performance circuit testing
Testing of high performance integrated circuits is becoming increasingly a challenging task owing to high clock frequencies. Often testers are not able to test such devices due to their limited high frequency capabilities. In this article we outline a design-for-test methodology such that high performance devices can be tested on relatively low performance testers. In addition, a BIST framework is discussed based on this methodology. Various implementation aspects of this technique are also addresse
Solving the puzzle of an unconventional phase transition for a 2d dimerized quantum Heisenberg model
Motivated by the indication of a new critical theory for the spin-1/2
Heisenberg model with a spatially staggered anisotropy on the square lattice as
suggested in \cite{Wenzel08}, we re-investigate the phase transition of this
model induced by dimerization using first principle Monte Carlo simulations. We
focus on studying the finite-size scaling of and ,
where stands for the spatial box size used in the simulations and
with is the spin-stiffness in the -direction.
Remarkably, while we do observe a large correction to scaling for the
observable as proposed in \cite{Fritz11}, the data for
exhibit a good scaling behavior without any indication of a large
correction. As a consequence, we are able to obtain a numerical value for the
critical exponent which is consistent with the known O(3) result with
moderate computational effort. Specifically, the numerical value of we
determine by fitting the data points of to their expected scaling
form is given by , which agrees quantitatively with the most
accurate known Monte Carlo O(3) result . Finally, while we can
also obtain a result of from the observable second Binder ratio
which is consistent with , the uncertainty of calculated
from is more than twice as large as that of determined from
.Comment: 7 figures, 1 table; brief repor
Itinerant-localized dual character of a strongly-correlated superfluid Bose gas in an optical lattice
We investigate a strongly-correlated Bose gas in an optical lattice.
Extending the standard-basis operator method developed by Haley and Erdos to a
boson Hubbard model, we calculate excitation spectra in the superfluid phase,
as well as in the Mott insulating phase, at T=0. In the Mott phase, the
excitation spectrum has a finite energy gap, reflecting the localized character
of atoms. In the superfluid phase, the excitation spectrum is shown to have an
itinerant-localized dual structure, where the gapless Bogoliubov mode (which
describes the itinerant character of superfluid atoms) and a band with a finite
energy gap coexist. We also show that the rf-tunneling current measurement
would give a useful information about the duality of a strongly-correlated
superfluid Bose gas near the superfluid-insulator transition.Comment: 10 pages, 4 figure
Trends and challenges in VLSI technology scaling towards 100 nm
Summary form only given. Moore's Law drives VLSI technology to continuous increases in transistor densities and higher clock frequencies. This tutorial will review the trends in VLSI technology scaling in the last few years and discuss the challenges facing process and circuit engineers in the 100nm generation and beyond. The first focus area is the process technology, including transistor scaling trends and research activities for the 100nm technology node and beyond. The transistor leakage and interconnect RC delays will continue to increase. The tutorial will review new circuit design techniques for emerging process technologies, including dual Vt transistors and silicon-on-insulator. It will also cover circuit and layout techniques to reduce clock distribution skew and jitter, model and reduce transistor leakage and improve the electrical performance of flip-chip packages. Finally, the tutorial will review the test challenges for the 100nm technology node due to increased clock frequency and power consumption (both active and passive) and present several potential solution
Quantum phase transitions in bilayer SU(N) anti-ferromagnets
We present a detailed study of the destruction of SU(N) magnetic order in
square lattice bilayer anti-ferromagnets using unbiased quantum Monte Carlo
numerical simulations and field theoretic techniques. We study phase
transitions from an SU(N) N\'eel state into two distinct quantum disordered
"valence-bond" phases: a valence-bond liquid (VBL) with no broken symmetries
and a lattice-symmetry breaking valence-bond solid (VBS) state. For finite
inter-layer coupling, the cancellation of Berry phases between the layers has
dramatic consequences on the two phase transitions: the N\'eel-VBS transition
is first order for all accesible in our model, whereas the N\'eel-VBL
transition is continuous for N=2 and first order for N>= 4; for N=3 the
N\'eel-VBL transition show no signs of first-order behavior
- …
