research

Putting competing orders in their place near the Mott transition

Abstract

We describe the localization transition of superfluids on two-dimensional lattices into commensurate Mott insulators with average particle density p/q (p, q relatively prime integers) per lattice site. For bosons on the square lattice, we argue that the superfluid has at least q degenerate species of vortices which transform under a projective representation of the square lattice space group (a PSG). The formation of a single vortex condensate produces the Mott insulator, which is required by the PSG to have density wave order at wavelengths of q/n lattice sites (n integer) along the principle axes; such a second-order transition is forbidden in the Landau-Ginzburg-Wilson framework. We also discuss the superfluid-insulator transition in the direct boson representation, and find that an interpretation of the quantum criticality in terms of deconfined fractionalized bosons is only permitted at special values of q for which a permutative representation of the PSG exists. We argue (and demonstrate in detail in a companion paper: L. Balents et al., cond-mat/0409470) that our results apply essentially unchanged to electronic systems with short-range pairing, with the PSG determined by the particle density of Cooper pairs. We also describe the effect of static impurities in the superfluid: the impurities locally break the degeneracy between the q vortex species, and this induces density wave order near each vortex. We suggest that such a theory offers an appealing rationale for the local density of states modulations observed by Hoffman et al. (cond-mat/0201348) in STM studies of the vortex lattice of BSCCO, and allows a unified description of the nucleation of density wave order in zero and finite magnetic fields. We note signatures of our theory that may be tested by future STM experiments.Comment: 35 pages, 16 figures; (v2) part II is cond-mat/0409470; (v3) added new appendix and clarifying remarks; (v4) corrected typo

    Similar works