We describe the localization transition of superfluids on two-dimensional
lattices into commensurate Mott insulators with average particle density p/q
(p, q relatively prime integers) per lattice site. For bosons on the square
lattice, we argue that the superfluid has at least q degenerate species of
vortices which transform under a projective representation of the square
lattice space group (a PSG). The formation of a single vortex condensate
produces the Mott insulator, which is required by the PSG to have density wave
order at wavelengths of q/n lattice sites (n integer) along the principle axes;
such a second-order transition is forbidden in the Landau-Ginzburg-Wilson
framework. We also discuss the superfluid-insulator transition in the direct
boson representation, and find that an interpretation of the quantum
criticality in terms of deconfined fractionalized bosons is only permitted at
special values of q for which a permutative representation of the PSG exists.
We argue (and demonstrate in detail in a companion paper: L. Balents et al.,
cond-mat/0409470) that our results apply essentially unchanged to electronic
systems with short-range pairing, with the PSG determined by the particle
density of Cooper pairs. We also describe the effect of static impurities in
the superfluid: the impurities locally break the degeneracy between the q
vortex species, and this induces density wave order near each vortex. We
suggest that such a theory offers an appealing rationale for the local density
of states modulations observed by Hoffman et al. (cond-mat/0201348) in STM
studies of the vortex lattice of BSCCO, and allows a unified description of the
nucleation of density wave order in zero and finite magnetic fields. We note
signatures of our theory that may be tested by future STM experiments.Comment: 35 pages, 16 figures; (v2) part II is cond-mat/0409470; (v3) added
new appendix and clarifying remarks; (v4) corrected typo