5,745 research outputs found

    The two dimensional Antiferromagnetic Heisenberg model with next nearest neighbour Ising exchange

    Full text link
    We have considered the S=1/2S=1/2 antiferromagnetic Heisenberg model in two dimensions, with an additional Ising \nnn interaction. Antiferromagnetic \nnn interactions will lead to frustration, and the system responds with flipping the spins down in the xyxy plane. For large next nearest neighbour coupling the system will order in a striped phase along the z axis, this phase is reached through a first order transition. We have considered two generalizations of this model, one with random \nnn interactions, and one with an enlarged unit cell, where only half of the atoms have \nnn interactions. In both cases the transition is softened to a second order transition separating two ordered states. In the latter case we have estimated the quantum critical exponent β≈0.25\beta \approx 0.25. These two cases then represent candidate examples of deconfined quantum criticality.Comment: Extensive revisions. Two new models with contious quantum phase transitio

    Spin dynamics across the superfluid-insulator transition of spinful bosons

    Full text link
    Bosons with non-zero spin exhibit a rich variety of superfluid and insulating phases. Most phases support coherent spin oscillations, which have been the focus of numerous recent experiments. These spin oscillations are Rabi oscillations between discrete levels deep in the insulator, while deep in the superfluid they can be oscillations in the orientation of a spinful condensate. We describe the evolution of spin oscillations across the superfluid-insulator quantum phase transition. For transitions with an order parameter carrying spin, the damping of such oscillations is determined by the scaling dimension of the composite spin operator. For transitions with a spinless order parameter and gapped spin excitations, we demonstrate that the damping is determined by an associated quantum impurity problem of a localized spin excitation interacting with the bulk critical modes. We present a renormalization group analysis of the quantum impurity problem, and discuss the relationship of our results to experiments on ultracold atoms in optical lattices.Comment: 43 pages (single-column format), 8 figures; v2: corrected discussion of fixed points in Section V

    Holographic Quantum Critical Transport without Self-Duality

    Get PDF
    We describe general features of frequency-dependent charge transport near strongly interacting quantum critical points in 2+1 dimensions. The simplest description using the AdS/CFT correspondence leads to a self-dual Einstein-Maxwell theory on AdS_4, which fixes the conductivity at a frequency-independent self-dual value. We describe the general structure of higher-derivative corrections to the Einstein-Maxwell theory, and compute their implications for the frequency dependence of the quantum-critical conductivity. We show that physical consistency conditions on the higher-derivative terms allow only a limited frequency dependence in the conductivity. The frequency dependence is amenable to a physical interpretation using transport of either particle-like or vortex-like excitations.Comment: 42 pages, 7 figures. A new figure showing the frequency dependence of EM dual conductivity and few references added. Abstract, introduction, section 5 and discussion extended. To appear in Phys.Rev.

    Metallic spin glasses

    Full text link
    Recent work on the zero temperature phases and phase transitions of strongly random electronic system is reviewed. The transition between the spin glass and quantum paramagnet is examined, for both metallic and insulating systems. Insight gained from the solution of infinite range models leads to a quantum field theory for the transition between a metallic quantum paramagnetic and a metallic spin glass. The finite temperature phase diagram is described and crossover functions are computed in mean field theory. A study of fluctuations about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference on Non-Fermi liquids, 25 pages, requires IOP style file

    Interface ordering and phase competition in a model Mott-insulator--band-insulator heterostructure

    Full text link
    The phase diagram of model Mott-insulator--band-insulator heterostructures is studied using the semiclassical approximation to the dynamical-mean-field method as a function of thickness, coupling constant, and charge confinement. An interface-stabilized ferromagnetic phase is found, allow the study of its competition and possible coexistence with the antiferromagnetic order characteristic of the bulk Mott insulator.Comment: 5 pages, 3 figures, manuscript revised, results unchange

    Dynamical properties of a nonequilibrium quantum dot close to localized-delocalized quantum phase transitions

    Full text link
    We calculate the dynamical decoherence rate and susceptibility of a nonequilibrium quantum dot close to the delocalized-to-localized quantum phase transitions. The setup concerns a resonance-level coupled to two spinless fermionic baths with a finite bias voltage and an Ohmic bosonic bath representing the dissipative environment. The system is equivalent to an anisotropic Kondo model. As the dissipation strength increases, the system at zero temperature and zero bias show quantum phase transition between a conducting delocalized phase to an insulating localized phase. Within the nonequilibrium functional Renormalization Group (FRG) approach, we address the finite bias crossover in dynamical decoherence rate and charge susceptibility close to the phase transition. We find the dynamical decoherence rate increases with increasing frequency. In the delocalized phase, it shows a singularity at frequencies equal to positive or negative bias voltage. As the system crossovers to the localized phase, the decoherence rate at low frequencies get progressively smaller and this sharp feature is gradually smeared out, leading to a single linear frequency dependence. The dynamical charge susceptibility shows a dip-to-peak crossover across the delocalized-to-localized transition. Relevance of our results to the experiments is discussed.Comment: 7 pages, 7 figure

    Competition between spin density wave order and superconductivity in the underdoped cuprates

    Get PDF
    We describe the interplay between d-wave superconductivity and spin density wave (SDW) order in a theory of the hole-doped cuprates at hole densities below optimal doping. The theory assumes local SDW order, and associated electron and hole pocket Fermi surfaces of charge carriers in the normal state. We describe quantum and thermal fluctuations in the orientation of the local SDW order, which lead to d-wave superconductivity: we compute the superconducting critical temperature and magnetic field in a `minimal' universal theory. We also describe the back-action of the superconductivity on the SDW order, showing that SDW order is more stable in the metal. Our results capture key aspects of the phase diagram of Demler et al. (cond-mat/0103192) obtained in a phenomenological quantum theory of competing orders. Finally, we propose a finite temperature crossover phase diagram for the cuprates. In the metallic state, these are controlled by a `hidden' quantum critical point near optimal doping involving the onset of SDW order in a metal. However, the onset of superconductivity results in a decrease in stability of the SDW order, and consequently the actual SDW quantum critical point appears at a significantly lower doping. All our analysis is placed in the context of recent experimental results.Comment: 27 pages, 11 figures; (v2) added clarifications and refs, and corrected numerical errors (thanks to A. Chubukov

    Specific heat of the S=1/2 Heisenberg model on the kagome lattice: high-temperature series expansion analysis

    Full text link
    We compute specific heat of the antiferromagnetic spin-1/2 Heisenberg model on the kagome lattice. We use a recently introduced technique to analyze high-temperature series expansion based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. In the case of kagome-lattice antiferromagnet, this method predicts a low-temperature peak at T/J<0.1.Comment: 6 pages, 5 color figures (.eps), Revtex 4. Change in version 3: Fig. 5 has been corrected (it now shows data for 3 different ground-state energies). The text is unchanged. v4: corrected an error in the temperature scale of Fig. 5. (text unchanged

    Engineering correlation and entanglement dynamics in spin systems

    Full text link
    We show that the correlation and entanglement dynamics of spin systems can be understood in terms of propagation of spin waves. This gives a simple, physical explanation of the behaviour seen in a number of recent works, in which a localised, low-energy excitation is created and allowed to evolve. But it also extends to the scenario of translationally invariant systems in states far from equilibrium, which require less local control to prepare. Spin-wave evolution is completely determined by the system's dispersion relation, and the latter typically depends on a small number of external, physical parameters. Therefore, this new insight into correlation dynamics opens up the possibility not only of predicting but also of controlling the propagation velocity and dispersion rate, by manipulating these parameters. We demonstrate this analytically in a simple, example system.Comment: 4 pages, 4 figures, REVTeX4 forma
    • …
    corecore