6,195 research outputs found

    Improving information/disturbance and estimation/distortion trade-offs with non universal protocols

    Get PDF
    We analyze in details a conditional measurement scheme based on linear optical components, feed-forward loop and homodyne detection. The scheme may be used to achieve two different tasks. On the one hand it allows the extraction of information with minimum disturbance about a set of coherent states. On the other hand, it represents a nondemolitive measurement scheme for the annihilation operator, i.e. an indirect measurement of the Q-function. We investigate the information/disturbance trade-off for state inference and introduce the estimation/distortion trade-off to assess estimation of the Q-function. For coherent states chosen from a Gaussian set we evaluate both information/disturbance and estimation/distortion trade-offs and found that non universal protocols may be optimized in order to achieve better performances than universal ones. For Fock number states we prove that universal protocols do not exist and evaluate the estimation/distortion trade-off for a thermal distribution.Comment: 10 pages, 6 figures; published versio

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    A minimum-disturbing quantum state discriminator

    Get PDF
    We propose two experimental schemes for quantum state discrimination that achieve the optimal tradeoff between the probability of correct identification and the disturbance on the quantum state.Comment: 9 pages, 1 figure, OSID style. Submitted to the special issue of "Open Systems and Information Dynamics", Proceedings of the "38th Symposium on Mathematical Physics", Torun, Poland, June 200

    Characterization of tomographically faithful states in terms of their Wigner function

    Full text link
    A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries a complete information about the operation itself. Tomographically faithful states are a necessary ingredient for tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes.Comment: 9 pages. IOPAMS style. Some improvement

    Physical realizations of quantum operations

    Full text link
    Quantum operations (QO) describe any state change allowed in quantum mechanics, such as the evolution of an open system or the state change due to a measurement. We address the problem of which unitary transformations and which observables can be used to achieve a QO with generally different input and output Hilbert spaces. We classify all unitary extensions of a QO, and give explicit realizations in terms of free-evolution direct-sum dilations and interacting tensor-product dilations. In terms of Hilbert space dimensionality the free-evolution dilations minimize the physical resources needed to realize the QO, and for this case we provide bounds for the dimension of the ancilla space versus the rank of the QO. The interacting dilations, on the other hand, correspond to the customary ancilla-system interaction realization, and for these we derive a majorization relation which selects the allowed unitary interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.

    HST resolves stars in a tiny body falling on the dwarf galaxy DDO 68

    Get PDF
    We present new Hubble Space Telescope (HST) imaging of a stream-like system associated with the dwarf galaxy DDO 68, located in the Lynx-Cancer Void at a distance of D\sim12.65 Mpc from us. The stream, previously identified in deep Large Binocular Telescope images as a diffuse low surface brightness structure, is resolved into individual stars in the F606W (broad V) and F814W (\simI) images acquired with the Wide Field Camera 3. The resulting V, I color-magnitude diagram (CMD) of the resolved stars is dominated by old (age\gtrsim1-2 Gyr) red giant branch (RGB) stars. From the observed RGB tip, we conclude that the stream is at the same distance as DDO 68, confirming the physical association with it. A synthetic CMD analysis indicates that the large majority of the star formation activity in the stream occurred at epochs earlier than \sim1 Gyr ago, and that the star formation at epochs more recent than \sim500 Myr ago is compatible with zero. The total stellar mass of the stream is 106M\sim10^{6} M_{\odot}, about 1/100 of that of DDO~68. This is a striking example of hierarchical merging in action at the dwarf galaxy scales.Comment: ApJ in pres

    Phase-covariant cloning of coherent states

    Full text link
    We consider the problem of phase-covariant cloning for coherent states. We show that an experimental scheme based on ideal phase measurement and feedforward outperforms the semiclassical procedure of ideal phase measurement and preparation in terms of fidelity. A realistic scheme where the ideal phase measurement is replaced with double-homodyne detection is shown to be unable to overcome the semiclassical cloning strategy. On the other hand, such a realistic scheme is better than semiclassical cloning based on double-homodyne phase measurement and preparation.Comment: 6 pages, 2 figures; updated references and minor corrections; in press on Physical Review

    Optimal discrimination of quantum operations

    Full text link
    We address the problem of discriminating with minimal error probability two given quantum operations. We show that the use of entangled input states generally improves the discrimination. For Pauli channels we provide a complete comparison of the optimal strategies where either entangled or unentangled input states are used.Comment: 4 pages, no figure

    Minimum error discrimination of Pauli channels

    Full text link
    We solve the problem of discriminating with minimum error probability two given Pauli channels. We show that, differently from the case of discrimination between unitary transformations, the use of entanglement with an ancillary system can strictly improve the discrimination, and any maximally entangled state allows to achieve the optimal discrimination. We also provide a simple necessary and sufficient condition in terms of the structure of the channels for which the ultimate minimum error probability can be achieved without entanglement assistance. When such a condition is satisfied, the optimal input state is simply an eigenstate of one of the Pauli matrices.Comment: 8 pages, no figure
    corecore