482 research outputs found

    Gold nanoparticles supported on magnesium oxide for CO oxidation

    Get PDF
    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts

    The Barrett's Gland in Phenotype Space

    Get PDF
    Barrett's esophagus is characterized by the erosive replacement of esophageal squamous epithelium by a range of metaplastic glandular phenotypes. These glandular phenotypes likely change over time, and their distribution varies along the Barrett's segment. Although much recent work has addressed Barrett's esophagus from the genomic viewpoint-its genotype space-the fact that the phenotype of Barrett's esophagus is nonstatic points to conversion between phenotypes and suggests that Barrett's esophagus also exists in phenotype space. Here we explore this latter concept, investigating the scope of glandular phenotypes in Barrett's esophagus and how they exist in physical and temporal space as well as their evolution and their life history. We conclude that individual Barrett's glands are clonal units; because of this important fact, we propose that it is the Barrett's gland that is the unit of selection in phenotypic and indeed neoplastic progression. Transition between metaplastic phenotypes may be governed by neutral drift akin to niche turnover in normal and dysplastic niches. In consequence, the phenotype of Barrett's glands assumes considerable importance, and we make a strong plea for the integration of the Barrett's gland in both genotype and phenotype space in future work

    On Multiview Analysis for Fingerprint Liveness Detection

    Get PDF
    Fingerprint recognition systems, as any other biometric system, can be subject to attacks, which are usually carried out using artificial fingerprints. Several approaches to discriminate between live and fake fingerprint images have been presented to address this issue. These methods usually rely on the analysis of individual features extracted from the fingerprint images. Such features represent different and complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. However, very little work in this direction has been reported in the literature. In this work, we present the results of a preliminary investigation on multiview analysis for fingerprint liveness detection. Experimental results show the effectiveness of such approach, which improves previous results in the literatur

    MLH1 deficiency leads to deregulated mitochondrial metabolism

    Get PDF
    The DNA mismatch repair (MMR) pathway is responsible for the repair of base–base mismatches and insertion/deletion loops that arise during DNA replication. MMR deficiency is currently estimated to be present in 15–17% of colorectal cancer cases and 30% of endometrial cancers. MLH1 is one of the key proteins involved in the MMR pathway. Inhibition of a number of mitochondrial genes, including POLG and PINK1 can induce synthetic lethality in MLH1-deficient cells. Here we demonstrate for the first time that loss of MLH1 is associated with a deregulated mitochondrial metabolism, with reduced basal oxygen consumption rate and reduced spare respiratory capacity. Furthermore, MLH1-deficient cells display a significant reduction in activity of the respiratory chain Complex I. As a functional consequence of this perturbed mitochondrial metabolism, MLH1-deficient cells have a reduced anti-oxidant response and show increased sensitivity to reactive oxidative species (ROS)-inducing drugs. Taken together, our results provide evidence for an intrinsic mitochondrial dysfunction in MLH1-deficient cells and a requirement for MLH1 in the regulation of mitochondrial function

    Cell migration leads to spatially distinct but clonally related airway cancer precursors

    Get PDF
    Background Squamous cell carcinoma of the lung is a common cancer with 95% mortality at 5 years. These cancers arise from preinvasive lesions, which have a natural history of development progressing through increasing severity of dysplasia to carcinoma in situ (CIS), and in some cases, ending in transformation to invasive carcinoma. Synchronous preinvasive lesions identified at autopsy have been previously shown to be clonally related. Methods Using autofluorescence bronchoscopy that allows visual observation of preinvasive lesions within the upper airways, together with molecular profiling of biopsies using gene sequencing and loss-of-heterozygosity analysis from both preinvasive lesions and from intervening normal tissue, we have monitored individual lesions longitudinally and documented their visual, histological and molecular relationship. Results We demonstrate that rather than forming a contiguous field of abnormal tissue, clonal CIS lesions can develop at multiple anatomically discrete sites over time. Further, we demonstrate that patients with CIS in the trachea have invariably had previous lesions that have migrated proximally, and in one case, into the other lung over a period of 12 years. Conclusions Molecular information from these unique biopsies provides for the first time evidence that field cancerisation of the upper airways can occur through cell migration rather than via local contiguous cellular expansion as previously thought. Our findings urge a clinical strategy of ablating high-grade premalignant airway lesions with subsequent attentive surveillance for recurrence in the bronchial tree
    • …
    corecore