67 research outputs found

    Protocol for a systematic review and individual patient data meta-analysis of benefit of so-called lung-protective ventilation settings in patients under general anesthesia for surgery

    Get PDF
    BACKGROUND: Almost all patients under general anesthesia for surgery need mechanical ventilation. The harmful effects of short-term intra-operative ventilation on pulmonary integrity are increasingly recognized. Recent investigations suggest protection against so-called ventilation-associated lung injury with the use of lower tidal volumes and/or the use of higher levels of positive end-expiratory pressure (PEEP). This review and meta-analysis will evaluate the effects of these protective measures on pulmonary and extra-pulmonary complications, and try to discriminate the effects of lower tidal volumes from those of higher levels of PEEP. METHODS/DESIGN: The Medline database will be searched for observational studies and randomized controlled trials of intra-operative ventilation. Individual patient data will be collected from databases obtained via direct contact with corresponding authors of original articles. The primary endpoint is development of postoperative acute respiratory distress syndrome, the most important postoperative pulmonary complication. Secondary endpoints include hospital length of stay and hospital mortality, and reported intra-operative and postoperative pulmonary and extra-pulmonary complications. Emphasis is put on separating the effects of lower tidal volumes from those of higher levels of PEEP. DISCUSSION: This will be the first meta-analysis of intra-operative ventilation using individual patient data from observational studies and randomized controlled trials. The large sample size could allow discrimination of the effect of the two most frequently used protective measures - that is, lower tidal volumes and higher levels of PEEP. The results of this review and meta-analysis can be used in designing future trials of ventilation

    Rationale and study design of PROVHILO - a worldwide multicenter randomized controlled trial on protective ventilation during general anesthesia for open abdominal surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-operative pulmonary complications add to the morbidity and mortality of surgical patients, in particular after general anesthesia >2 hours for abdominal surgery. Whether a protective mechanical ventilation strategy with higher levels of positive end-expiratory pressure (PEEP) and repeated recruitment maneuvers; the "open lung strategy", protects against post-operative pulmonary complications is uncertain. The present study aims at comparing a protective mechanical ventilation strategy with a conventional mechanical ventilation strategy during general anesthesia for abdominal non-laparoscopic surgery.</p> <p>Methods</p> <p>The PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure ("PROVHILO") trial is a worldwide investigator-initiated multicenter randomized controlled two-arm study. Nine hundred patients scheduled for non-laparoscopic abdominal surgery at high or intermediate risk for post-operative pulmonary complications are randomized to mechanical ventilation with the level of PEEP at 12 cmH<sub>2</sub>O with recruitment maneuvers (the lung-protective strategy) or mechanical ventilation with the level of PEEP at maximum 2 cmH<sub>2</sub>O without recruitment maneuvers (the conventional strategy). The primary endpoint is any post-operative pulmonary complication.</p> <p>Discussion</p> <p>The PROVHILO trial is the first randomized controlled trial powered to investigate whether an open lung mechanical ventilation strategy in short-term mechanical ventilation prevents against postoperative pulmonary complications.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN70332574">ISRCTN70332574</a></p

    Driving pressure during general anesthesia for open abdominal surgery (DESIGNATION) : study protocol of a randomized clinical trial

    Get PDF
    Background Intraoperative driving pressure (Delta P) is associated with development of postoperative pulmonary complications (PPC). When tidal volume (V-T) is kept constant, Delta P may change according to positive end-expiratory pressure (PEEP)-induced changes in lung aeration. Delta P may decrease if PEEP leads to a recruitment of collapsed lung tissue but will increase if PEEP mainly causes pulmonary overdistension. This study tests the hypothesis that individualized high PEEP, when compared to fixed low PEEP, protects against PPC in patients undergoing open abdominal surgery. Methods The "Driving prESsure durIng GeNeral AnesThesIa for Open abdomiNal surgery trial" (DESIGNATION) is an international, multicenter, two-group, double-blind randomized clinical superiority trial. A total of 1468 patients will be randomly assigned to one of the two intraoperative ventilation strategies. Investigators screen patients aged >= 18 years and with a body mass index <= 40 kg/m(2), scheduled for open abdominal surgery and at risk for PPC. Patients either receive an intraoperative ventilation strategy with individualized high PEEP with recruitment maneuvers (RM) ("individualized high PEEP") or one in which PEEP of 5 cm H2O without RM is used ("low PEEP"). In the "individualized high PEEP" group, PEEP is set at the level at which Delta P is lowest. In both groups of the trial, V-T is kept at 8 mL/kg predicted body weight. The primary endpoint is the occurrence of PPC, recorded as a collapsed composite of adverse pulmonary events. Discussion DESIGNATION will be the first randomized clinical trial that is adequately powered to compare the effects of individualized high PEEP with RM versus fixed low PEEP without RM on the occurrence of PPC after open abdominal surgery. The results of DESIGNATION will support anesthesiologists in their decisions regarding PEEP settings during open abdominal surgery

    Intraoperative ventilator settings and their association with postoperative pulmonary complications in neurosurgical patients : post-hoc analysis of LAS VEGAS study

    Get PDF
    Background Limited information is available regarding intraoperative ventilator settings and the incidence of postoperative pulmonary complications (PPCs) in patients undergoing neurosurgical procedures. The aim of this post-hoc analysis of the 'Multicentre Local ASsessment of VEntilatory management during General Anaesthesia for Surgery' (LAS VEGAS) study was to examine the ventilator settings of patients undergoing neurosurgical procedures, and to explore the association between perioperative variables and the development of PPCs in neurosurgical patients. Methods Post-hoc analysis of LAS VEGAS study, restricted to patients undergoing neurosurgery. Patients were stratified into groups based on the type of surgery (brain and spine), the occurrence of PPCs and the assess respiratory risk in surgical patients in Catalonia (ARISCAT) score risk for PPCs. Results Seven hundred eighty-four patients were included in the analysis; 408 patients (52%) underwent spine surgery and 376 patients (48%) brain surgery. Median tidal volume (V-T) was 8 ml [Interquartile Range, IQR = 7.3-9] per predicted body weight; median positive end-expiratory pressure (PEEP) was 5 [3 to 5] cmH(2)0. Planned recruitment manoeuvres were used in the 6.9% of patients. No differences in ventilator settings were found among the sub-groups. PPCs occurred in 81 patients (10.3%). Duration of anaesthesia (odds ratio, 1.295 [95% confidence interval 1.067 to 1.572]; p = 0.009) and higher age for the brain group (odds ratio, 0.000 [0.000 to 0.189]; p = 0.031), but not intraoperative ventilator settings were independently associated with development of PPCs. Conclusions Neurosurgical patients are ventilated with low V-T and low PEEP, while recruitment manoeuvres are seldom applied. Intraoperative ventilator settings are not associated with PPCs

    International multicenter observational study on assessment of ventilatory management during general anaesthesia for robotic surgery and its effects on postoperative pulmonary complication (AVATaR) : study protocol and statistical analysis plan

    Get PDF
    Introduction: Robotic-assisted surgery (RAS) has emerged as an alternative minimally invasive surgical option. Despite its growing applicability, the frequent need for pneumoperitoneum and Trendelenburg position could significantly affect respiratory mechanics during RAS. AVATaR is an international multicenter observational study aiming to assess the incidence of postoperative pulmonary complications (PPC), to characterise current practices of mechanical ventilation (MV) and to evaluate a possible association between ventilatory parameters and PPC in patients undergoing RAS. Methods and analysis: AVATaR is an observational study of surgical patients undergoing MV for general anaesthesia for RAS. The primary outcome is the incidence of PPC during the first five postoperative days. Secondary outcomes include practice of MV, effect of surgical positioning on MV, effect of MV on clinical outcome and intraoperative complications. Ethics and dissemination: This study was approved by the Institutional Review Board of the Hospital Israelita Albert Einstein. The study results will be published in peer-reviewed journals and disseminated at international conferences. Trial registration number: NCT02989415; Pre-results

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P &lt; 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P &lt; 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    From the dark side of ventilation toward a brighter look at lungs

    No full text

    Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis

    No full text
    It is uncertain whether patients undergoing short-lasting mechanical ventilation for surgery benefit from lung-protective intraoperative ventilatory settings including the use of lower tidal volumes, higher levels of positive end-expiratory pressure (PEEP) and/or recruitment maneuvers. We meta-analyzed trials testing the effect of lung-protective intraoperative ventilatory settings on the incidence of postoperative pulmonary complications. Eight articles (1669 patients) were included. Meta-analysis showed a decrease in lung injury development [risk ratio (RR) 0.40; 95% confidence interval (CI) 0.22-0.70; I 0%; number needed to treat (NNT) 37], pulmonary infection (RR 0.64; 95% CI 0.43-0.97; I 0%; NNT 27) and atelectasis (RR 0.67; 95% CI 0.47-0.96; I 48%; NNT 31) in patients receiving intraoperative mechanical ventilation with lower tidal volumes. Meta-analysis also showed a decrease in lung injury development (RR 0.29; 95% CI 0.14-0.60; I 0%; NNT 29), pulmonary infection (RR 0.62; 95% CI 0.40-0.96; I 15%; NNT 33) and atelectasis (RR 0.61; 95% CI 0.41-0.91; I 0%; NNT 29) in patients ventilated with higher levels of PEEP, with or without recruitment maneuvers. Lung-protective intraoperative ventilatory settings have the potential to protect against postoperative pulmonary complication

    Prediction of postoperative pulmonary complications

    No full text
    PURPOSE OF REVIEW: Prediction of postoperative pulmonary complications (PPCs) enables individually applied preventive measures and maybe even early treatment if a PPC eventually starts to develop. The purpose of this review is to describe crucial steps in the development and validation of prediction models, examine these steps in the current literature and describe what the future holds for PPC prediction. RECENT FINDINGS: A systematic search of the medical literature identified 21 articles reporting on prediction models for PPCs. The studies were heterogeneous with regard to design, derivation cohort and whether or not a validation cohort was used. Furthermore, as definitions for PPCs varied substantially, PPC rates were quite different. One-third of the studies had a sufficient sample size for building a prediction model. In most articles, an internal validation step was reported, suggesting a good fit. In the four articles that reported an externally validation step, in three the prognostic model performed less well in external validation. The ARISCAT risk score was the only score that kept sufficient predictive power in external validation, albeit that the sample sizes of the cohorts used may have been too small. Analysis by machine learning could help building new prediction models, as unbiased cluster analyses could uncover clusters of patients with specific underlying pathophysiological mechanisms. Adding biomarkers to the model could optimize identification of biological phenotypes of risk groups. SUMMARY: Many predictive models for PPCs have been reported on. Development of more robust PPC prediction models could be supported by machine learning

    The LAS VEGAS risk score for prediction of postoperative pulmonary complications: An observational study

    No full text
    BACKGROUND: Currently used pre-operative prediction scores for postoperative pulmonary complications (PPCs) use patient data and expected surgery characteristics exclusively. However, intra-operative events are also associated with the development of PPCs. OBJECTIVE: We aimed to develop a new prediction score for PPCs that uses both pre-operative and intra-operative data. DESIGN: This is a secondary analysis of the LAS VEGAS study, a large international, multicentre, prospective study. SETTINGS: A total of 146 hospitals across 29 countries. PATIENTS: Adult patients requiring intra-operative ventilation during general anaesthesia for surgery. INTERVENTIONS: The cohort was randomly divided into a development subsample to construct a predictive model, and a subsample for validation. MAIN OUTCOME MEASURES: Prediction performance of developed models for PPCs. RESULTS: Of the 6063 patients analysed, 10.9% developed at least one PPC. Regression modelling identified 13 independent risk factors for PPCs: six patient characteristics [higher age, higher American Society of Anesthesiology (ASA) physical score, pre-operative anaemia, pre-operative lower SpO2 and a history of active cancer or obstructive sleep apnoea], two procedure-related features (urgent or emergency surgery and surgery lasting ≥ 1 h), and five intra-operative events [use of an airway other than a supraglottic device, the use of intravenous anaesthetic agents along with volatile agents (balanced anaesthesia), intra-operative desaturation, higher levels of positive end-expiratory pressures > 3 cmH2O and use of vasopressors]. The area under the receiver operating characteristic curve of the LAS VEGAS risk score for prediction of PPCs was 0.78 [95% confidence interval (95% CI), 0.76 to 0.80] for the development subsample and 0.72 (95% CI, 0.69 to 0.76) for the validation subsample. CONCLUSION: The LAS VEGAS risk score including 13 peri-operative characteristics has a moderate discriminative ability for prediction of PPCs. External validation is needed before use in clinical practice. TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, number NCT01601223
    corecore