14 research outputs found

    Fault tolerant tracking controller design for T-S fuzzy disturbed systems with uncertainties subject to actuator faults

    No full text
    International audienceThe investigated fault tolerant control (FTC) problem for uncertain nonlinear systems with external disturbances against actuator faults is addressed. The aim is to synthesize a fault tolerant controller ensuring trajectory tracking for a class of nonlinear systems represented by Takagi-Sugeno (T-S) models with measurable premise variables. In order to design the FTC law a proportional integral observer (PIO) is adopted which estimate both of the faults and the faulty system states. Based on Lyapunov theory, and L2 optimization, the trajectory tracking performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of linear matrix inequalities (LMI). Simulation results show the effectiveness of the proposed method

    High-throughput ensemble-learning-driven band gap prediction of double perovskites solar cells absorber

    No full text
    Perovskite materials have attracted much attention in recent years due to their high performance, especially in the field of photovoltaics. However, the dark side of these materials is their poor stability, which poses a huge challenge to their practical applications. Double perovskite compounds, on the other hand, can show more stability as a result of their specific structure. One of the key properties of both perovskite and double perovskite is their tunable band gap, which can be determined using different techniques. Density functional theory (DFT), for instance, offers the potential to intelligently direct experimental investigation activities and predict various properties, including band gap. In reality, however, it is still difficult to anticipate the energy band gap from first principles, and accurate results often require more expensive methods such as hybrid functional or GW methods. In this paper, we present our development of high-throughput supervised ensemble learning-based methods: random forest, XGBoost, and Light GBM using a database of 1306 double perovskites materials to predict the energy band gap. Based on elemental properties, characteristics have been vectorized from chemical compositions. Our findings demonstrate the efficiency of ensemble learning methods and imply that scientists would benefit from recently employed methods in materials informatics

    The Impact of Age on In-Hospital Mortality in Critically Ill COVID-19 Patients: A Retrospective and Multicenter Study

    No full text
    International audienceIntroduction: For the past two years, healthcare systems worldwide have been battling the ongoing COVID-19 pandemic. Several studies tried to find predictive factors of mortality in COVID-19 patients. We aimed to research age as a predictive factor associated with in-hospital mortality in severe and critical SARS-CoV-2 infection.Methods: Between 1 March and 20 April 2020, we conducted a multicenter and retrospective study on a cohort of severe COVID-19 patients who were all hospitalized in the Intensive Care Unit (ICU). We led our study in nine hospitals of northeast France, one of the pandemic’s epicenters in Europe.Results: The median age of our study population was 66 years (58–72 years). Mortality was 24.6% (CI 95%: 20.6–29%) in the ICU and 26.5% (CI 95%: 22.3–31%) in the hospital. Non-survivors were significantly older (69 versus 64 years, p < 0.001) than the survivors. Although a history of cardio-vascular diseases was more frequent in the non-survivor group (p = 0.015), other underlying conditions and prior level of autonomy did not differ between the two groups. On multivariable analysis, age appeared to be an interesting predictive factor of in-hospital mortality. Thus, age ranges of 65 to 74 years (OR = 2.962, CI 95%: 1.231–7.132, p = 0.015) were predictive of mortality, whereas the group of patients aged over 75 years was not (OR = 3.084, CI 95%: 0.952–9.992, p = 0.06). Similarly, all comorbidities except for immunodeficiency (OR = 4.207, CI 95%: 1.006–17.586, p = 0.049) were not predictive of mortality. Finally, survival follow-up was obtained for the study population.Conclusion: Age appears to be a relevant predictive factor of in-hospital mortality in cases of severe or critical SARS-CoV-2 infection

    Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: a comparative study

    No full text
    Voir aussi https://www.ncbi.nlm.nih.gov/pubmed/28434979Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. STATEMENT OF SIGNIFICANCE: The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects

    Synergistic effects of BMP-2, BMP-6 or BMP-7 with human plasma fibronectin onto hydroxyapatite coatings: A comparative study

    No full text
    International audienceDesign of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6 &gt; BMP-2 &gt; BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. Statement of Significance The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects

    Human plasma fibronectin potentialization of the in vitro and in vivo osteogenic activity of BMPs onto hydroxyapatite coatings with a focus on BMP-6

    No full text
    Design of new osteoinductive biomaterials to recapitulate an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces prepared by pulsed laser deposition (PLD) technique. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN fundamentally differs depending on the BMP considered. Indeed, combining FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6 > BMP-2 > BMP-7. Finally, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our in vitro results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum side effects. Results of in vivo experiments in an intra-muscular ectopic model and in a critical-size radial defect in rabbit for validating the osteogenic capacity of FN/BMP-6 adsorbed on TiHA surfaces will be presented

    Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort

    No full text
    International audienceThe etiopathogenesis of critical COVID-19 remains unknown. Indeed given major confounding factors (age and comorbidities), true drivers of this condition have remained elusive. Here, we employ an unprecedented multi-omics analysis, combined with artificial intelligence, in a young patient cohort where major comorbidities have been excluded at the onset. Here, we established a three-tier cohort of individuals younger than 50 years without major comorbidities. These included 47 “critical” (in the ICU under mechanical ventilation) and 25 “non-critical” (in a non-critical care ward) COVID-19 patients as well as 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cells proteomics, cytokine profiling and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing and structural causal modeling led to key findings. Critical patients were characterized by exacerbated inflammation, perturbed lymphoid/myeloid compartments, coagulation and viral cell biology. Within a unique gene signature that differentiated critical from non-critical patients, several driver genes promoted critical COVID-19 among which the upregulated metalloprotease ADAM9 was key. This gene signature was supported in a second independent cohort of 81 critical and 73 recovered COVID-19 patients, as were ADAM9 transcripts, soluble form and proteolytic activity. Ex vivo ADAM9 inhibition affected SARS-CoV-2 uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, COVID-19 cohort, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. The key driver, ADAM9, interfered with SARS-CoV-2 biology. A repositioning strategy for anti-ADAM9 therapeutic is feasible
    corecore