93 research outputs found

    A Surface Relief Meter Based on Trinocular Vision

    Get PDF
    The concept for the relief meter being developed, appears to function well, when used with the artificial images. The described matching criterion leads to high matching percentages, and accurate results. The percentage of mismatches is reduced to practically zero for the tested scenes. Future work will involve evaluation of the algorithm with real agricultural scenes (soil images) and implementation of special hardware for fast execution of the algorith

    Nondestructive Magnetic Measurement of Biaxial Stress Using Magnetic Fields Parallel and Perpendicular to the Stress Plane

    Get PDF
    Many mechanical stress situations tend to be biaxial in character in that two stresses act along axes at 90°. Examples are the stresses found in gas pipeline, oil pipeline, power plant steam pipes, and railroad wheels

    Electric Current Perturbation Calculations for Half-Penny Cracks

    Get PDF
    The electric current perturbation (ECP) method1–4 consists of inducing or injecting an electric current flow in the material to be examined and then detecting localized perturbations of the magnetic flux associated with current flow around material defects such as cracks or inclusions. Empirically, ECP data has shown strong correlations among certain signal features and crack size characteristics, and thus promises to be a useful method for quantitative NDE. To aid in the further development of the method, the objectives of the work reported in this paper are (1) to develop a mathematical model of the ECP flux distribution for a half-penny crack, (2) to determine the degree of validity of the model through comparisons with experimental data, and (3) to develop a detailed theory of sizing relationships for half-penny cracks

    On Factor Universality in Symbolic Spaces

    Get PDF
    The study of factoring relations between subshifts or cellular automata is central in symbolic dynamics. Besides, a notion of intrinsic universality for cellular automata based on an operation of rescaling is receiving more and more attention in the literature. In this paper, we propose to study the factoring relation up to rescalings, and ask for the existence of universal objects for that simulation relation. In classical simulations of a system S by a system T, the simulation takes place on a specific subset of configurations of T depending on S (this is the case for intrinsic universality). Our setting, however, asks for every configurations of T to have a meaningful interpretation in S. Despite this strong requirement, we show that there exists a cellular automaton able to simulate any other in a large class containing arbitrarily complex ones. We also consider the case of subshifts and, using arguments from recursion theory, we give negative results about the existence of universal objects in some classes

    A model for hysteretic magnetic properties under the application of noncoaxial stress and field

    Get PDF
    Although descriptions of the effect of stress on spontaneous magnetization within a single domain already exist, there remains no adequate mathematical model for the effects of noncoaxial magnetic field and stress on bulk magnetization in a multidomained specimen. This article addresses the problem and provides a phenomenological theory that applies to the case of bulk isotropic materials. The magnetomechanical hysteresis model of Sablik and Jiles is thus extended to treat magnetic properties in the case of noncoaxial stress and magnetic field in an isotropic, polycrystalline medium. In the modeling, noncollinearity between magnetization and magnetic field is taken into account. The effect of roll‐axis anisotropy is also considered. Both magnetic and magnetostrictive hysteresis are describable by the extended model. Emphasis in this article is on describing properties like coercivity, remanence,hysteresis loss, maximum flux density, and maximum differential permeability as a function of stress for various angular orientations between field and stress axis. The model predictions are compared with experimental results

    Banff lesions and renal allograft survival in chronic-active antibody mediated rejection

    Get PDF
    Aims: Chronic-active antibody mediated rejection (c-aABMR) is a major cause of kidney graft loss. Currently, little is known about the relation between histopathologic parameters and renal allograft survival. Methods and results: Between 2008 and 2014, 41 patients with a progressive decrease in renal function were diagnosed with c-aABMR according to Banff 2015 and followed up for at least 3 years. Clinical and renal biopsy characteristics were analyzed for association with graft survival. During follow-up 26 cases lost their graft because of c-aABMR at a median follow up of 40 months after diagnosis. Cases with v-lesions in their biopsy had a significant higher loss of eGFR prior to diagnosis. The total inflammation score (r = −0.45 p =.007) and the severity of interstitial fibrosis (r = −0.38 p =.023) were related to the eGFR at time of biopsy. Univariate regression analysis showed that eGFR at time of biopsy, total inflammation, interstitial fibrosis and the sum chronicity score were significantly related to the risk for graft failure during follow-up. In a multivariate analysis only the severity of interstitial fibrosis remained associated with decreased graft survival (HR 1.9 per score point, 95% CI 1.2–2.8, p =.004). Conclusion: Severity of renal interstitial fibrosis and not inflammation predicts graft survival in cases of c-aABMR

    Modeling the interrelating effects of plastic deformation and stress on magnetic properties of materials

    Get PDF
    A model has been developed that describes the interrelating effects of plastic deformation and applied stress on hysteresis loops based on the theory of ferromagnetichysteresis. In the current model the strength of pinning sites for domain walls is characterized by the pinning coefficient keff given by keff=k0+k′σ. The term k0 depicts pinning of domain walls by dislocations and is proportional to ρn, where ρ is the number density of dislocation which is related to the amount of plastic strain, and the exponent n depends on the strength of pinning sites. The second term k′σ∝−3/2λs/2mσ, where m is magnetization and λs is magnetostriction constant, describes the changes in pinning strength on a domain wall induced by an applied stress σ. The model was capable of reproducing the stress dependence of hysteresis loop properties such as coercivity and remanence of a series of nickel samples which were pre-strained to various plastic strain levels. An empirical relation was found between the parameter k0 and the plastic strain, which can be interpreted in terms of the effects on the strength of domain wall pinning of changes in dislocation density and substructure under plastic deformation

    Monitoring neutron embrittlement in nuclear pressure vessel steels using micromagnetic Barkhausen emissions

    Get PDF
    In nuclear power plants, neutron embrittlement of pressure vessel steels has been one of the main concerns. The use of micromagnetic Barkhausen emissions is a promising method to monitor the variations in microstructural and subsurface stress states due to their influence on these emissions. Measurements of these emissions can reveal neutron irradiationdegradation in nuclear power plant components. Samples which were irradiated at differentneutron fluences and annealed at different temperatures were obtained from three reactor surveillance programs. The results of different neutron fluences and annealing procedures showed noticeable fractional changes in the magnetic Barkhausen effect signal parameter, ΔMBE/MBE, and in the mechanical properties of these specimens. For example, increased intensity of neutron fluence decreased the ΔMBE/MBE as well as impact energy and upper‐shelf energy, but increased Rockwell hardness and yield strength. Typical changes in this parameter were in the range from −20% to −45% for fluences of up to 25×1018 n cm−2

    Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials

    Get PDF
    The effect of changing stress on the magnetization of ferromagnetic materials leads to behavior in which the magnetization may increase, or decrease, when exposed to the same stress under the same external conditions. A simple empirical law seems to govern the behavior when the magnetization begins from a major hysteresis loop. The application of the law of approach, in which the derivative of the magnetization with respect to the elastic energy supplied dM/dW is proportional to the magnetization displacement M an−M, is discussed
    corecore