36 research outputs found

    Syntaxin 8 and the Endoplasmic Reticulum Processing of ΔF508-CFTR

    Get PDF
    Background/Aims: Cystic fibrosis (CF) is a lethal recessive disorder caused by mutations in the CF transmembrane conductance regulator (CFTR). ΔF508, the most common mutation, is a misfolded protein that is retained in the endoplasmic reticulum and degraded, precluding delivery to the cell surface [1]. Methods: Here we use a combination of western blotting, immunoprecipitation, and short circuit current techniques combined with confocal microscopy to address whether the SNARE attachment protein, STX8 plays a role in ΔF508’s processing and movement out of the ER. Results: Although the SNARE protein STX8 is thought to be functionally related and primarily localized to early endosomes, we show that silencing of STX8, particularly in the presence of the Vertex corrector molecule C18, rescues ΔF508-CFTR, allowing it to reach the cell surface and increasing CFTR-dependent chloride currents by approximately 2.5-fold over control values. STX8 silencing reduced the binding of quality control protein, Hsp 27, a protein that targets ΔF508-CFTR for sumoylation and subsequent degradation, to ΔF508-CFTR. STX8 silencing increased the levels of Hsp 60 a protein involving in early events in protein folding. Conclusion: STX8 knockdown creates an environment favorable for mature ΔF508 to reach the cell surface. The data also suggest that when present at normal levels, STX8 functions as part of the cell’s quality control mechanism

    The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis

    No full text
    Background/Aims: The CFTR-Associated Ligand (CAL), a PDZ domain containing protein with two coiled-coil domains, reduces cell surface WT CFTR through degradation in the lysosome by a well-characterized mechanism. However, CAL’s regulatory effect on ΔF508 CFTR has remained almost entirely uninvestigated. Methods: In this study, we describe a previously unknown pathway for CAL by which it regulates the membrane expression of ΔF508 CFTR through arrest of ΔF508 CFTR trafficking in the endoplasmic reticulum (ER) using a combination of cell biology, biochemistry and electrophysiology. Results: We demonstrate that CAL is an ER localized protein that binds to ΔF508 CFTR and is degraded in the 26S proteasome. When CAL is inhibited, ΔF508 CFTR retention in the ER decreases and cell surface expression of mature functional ΔF508 CFTR is observed alongside of enhanced expression of plasma membrane scaffolding protein NHERF1. Chaperone proteins regulate this novel process, and ΔF508 CFTR binding to HSP40, HSP90, HSP70, VCP, and Aha1 changes to improve ΔF508 CFTR cell surface trafficking. Conclusion: Our results reveal a pathway in which CAL regulates the cell surface availability and intracellular retention of ΔF508 CFTR

    Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation.

    No full text
    Although, the most common Cystic Fibrosis mutation, ΔF508, in the cystic fibrosis transmembrane regulator. (CFTR), is located in nucleotide binding domain (NBD1), disease-causing mutations also occur in NBD2. To provide information on potential therapeutic strategies for mutations in NBD2, we studied, using a combination of biochemical approaches and newly created cell lines, two disease-causing NBD2 mutants, N1303K and S1235R. Surprisingly, neither was rescued by low temperature. Inhibition of proteasomes with MG132 or aggresomes with tubacin rescued the immature B and mature C bands of N1303K and S1235R, indicating that degradation occurs via proteasomes and aggresomes. We found no effect of the lysosome inhibitor E64. Thus, our results show that these NBD2 mutants are processing mutants with unique characteristics. Several known correctors developed to rescue ΔF508-CFTR, when applied either alone or in combination, significantly increased the maturation of bands B and C of both NBD 2 mutants. The best correction occurred with the combinations of C4 plus C18 or C3 plus C4. Co-transfection of truncated CFTR (∆27-264) into stably transfected cells was also able to rescue them. This demonstrates for the first time that transcomplementation with a truncated version of CFTR can rescue NBD2 mutants. Our results show that the N1303K mutation has a more profound effect on NBD2 processing than S1235R and that small-molecule correctors increase the maturation of bands B and C in NBD2 mutants. In addition, ∆27-264 was able to transcomplement both NDB2 mutants. We conclude that differences and similarities occur in the impact of mutations on NBD2 when compared to ΔF508-CFTR suggesting that individualized strategies may be needed to restore their function. Finally our results are important because they suggest that gene or corrector molecule therapies either alone or in combination individualized for NBD2 mutants may be beneficial for patients bearing N1303K or S1235R mutations

    Changes in the GEF-H1 Pathways after Traumatic Brain Injury

    No full text
    Brains undergo significant remodeling after traumatic brain injury (TBI). The Rho guanine triphosphate (GTP)ase pathways control brain remodeling during development and under pathological conditions. How the Rho GTPase pathways are regulated in the brain after TBI remains largely unknown, however. This study used the rat fluid percussion injury model to investigate changes in the Rho GTPase pathways after TBI. The results showed that TBI leads to activation and translocation of RhoA and Rac1 proteins from cytosolic fraction to the membrane fraction after injury. Consistently, the Rho guanine nucleotide exchange factors GEF-H1 and Cool-2/αPix are significantly activated by dephosphorylation and accumulation in the cytosolic fractions during the post-TBI phase. Because the Rho GTPase pathways are key regulators of brain remodeling, these results depict regulatory mechanisms of the Rho GTPase pathways after TBI, and pave the way for the study of therapeutic agents targeting the Rho GTPase pathways for functional recovery after TBI

    Supplementary Material for: Combination of Correctors Rescues CFTR Transmembrane-Domain Mutants by Mitigating their Interactions with Proteostasis

    No full text
    <i>Background/Aims:</i> Premature degradation of mutated cystic fibrosis transmembrane conductance regulator (CFTR) protein causes cystic fibrosis (CF), the commonest Mendelian disease in Caucasians. Despite recent advances in precision medicines for CF patients, many CFTR mutants have not been characterized and the effects of these new therapeutic approaches are still unclear for those mutants. <i>Methods:</i> Cells transfected or stably expressing four CFTR transmembrane-domain mutants (G85E, E92K, L1077P, and M1101K) were used to: 1) characterize the mutants according to their protein expression, thermal sensitivity, and degradation pathways; 2) evaluate the effects of correctors in rescuing them; and 3) explore the effects of correctors on CFTR interactions with proteostasis components. <i>Results:</i> All four mutants exhibited lower protein expression than did wild type-CFTR, and they were degraded by proteasomes and aggresomes. At low temperature, only cells expressing the mutants L1077P and M1101K exhibited increased CFTR maturation. Co-administration of C4 and C18 showed the greatest effect, restoring functional expression and partial stability of CFTR bearing E92K, L1077P, or M1101K at the cell surface. However, this treatment was inefficient in rectifying the defect of CFTR bearing G85E. Correctors rescued CFTR mutants by reducing their interactions with proteostasis components associated with protein retention in the endoplasmic reticulum and ubiquitination. <i>Conclusion:</i> Co-administration of C4 and C18 rescued CFTR transmembrane-domain mutants by remodeling the CFTR interactome

    Degradation pathways for the N1303K mutation.

    No full text
    <p>An HEK 293 cell line stably expressing N1303K was treated with (<b>A)</b> the lysosome inhibitor E64, <b>(B)</b> proteasome inhibitor MG132, or <b>(C)</b> aggresome inhibitor tubacin. <b>(D)</b> The graph shows that the N1303K mutant is mainly degraded by the proteasome and aggresome; no effect was detected after lysosome treatment. Data are expressed as the mean ± SD of 3 independent experiments.</p
    corecore