14 research outputs found

    A Novel Predictor Tool of Biochemical Recurrence after Radical Prostatectomy Based on a Five-MicroRNA Tissue Signature

    Get PDF
    Within five to ten years after radical prostatectomy (RP), approximately 15-34% of prostate cancer (PCa) patients experience biochemical recurrence (BCR), which is defined as recurrence of serum levels of prostate-specific antigen >0.2 µg/L, indicating probable cancer recurrence. Models using clinicopathological variables for predicting this risk for patients lack accuracy. There is hope that new molecular biomarkers, like microRNAs (miRNAs), could be potential candidates to improve risk prediction. Therefore, we evaluated the BCR prognostic capability of 20 miRNAs, which were selected by a systematic literature review. MiRNA expressions were measured in formalin-fixed, paraffin-embedded (FFPE) tissue RP samples of 206 PCa patients by RT-qPCR. Univariate and multivariate Cox regression analyses were performed, to assess the independent prognostic potential of miRNAs. Internal validation was performed, using bootstrapping and the split-sample method. Five miRNAs (miR-30c-5p/31-5p/141-3p/148a-3p/miR-221-3p) were finally validated as independent prognostic biomarkers. Their prognostic ability and accuracy were evaluated using C-statistics of the obtained prognostic indices in the Cox regression, time-dependent receiver-operating characteristics, and decision curve analyses. Models of miRNAs, combined with relevant clinicopathological factors, were built. The five-miRNA-panel outperformed clinically established BCR scoring systems, while their combination significantly improved predictive power, based on clinicopathological factors alone. We conclude that this miRNA-based-predictor panel will be worth to be including in future studies

    Circular RNAs in Clear Cell Renal Cell Carcinoma: Their Microarray-Based Identification, Analytical Validation, and Potential Use in a Clinico-Genomic Model to Improve Prognostic Accuracy

    Get PDF
    Circular RNAs (circRNAs) may act as novel cancer biomarkers. However, a genome-wide evaluation of circRNAs in clear cell renal cell carcinoma (ccRCC) has yet to be conducted. Therefore, the objective of this study was to identify and validate circRNAs in ccRCC tissue with a focus to evaluate their potential as prognostic biomarkers. A genome-wide identification of circRNAs in total RNA extracted from ccRCC tissue samples was performed using microarray analysis. Three relevant differentially expressed circRNAs were selected (circEGLN3, circNOX4, and circRHOBTB3), their circular nature was experimentally confirmed, and their expression-along with that of their linear counterparts-was measured in 99 malignant and 85 adjacent normal tissue samples using specifically established RT-qPCR assays. The capacity of circRNAs to discriminate between malignant and adjacent normal tissue samples and their prognostic potential (with the endpoints cancer-specific, recurrence-free, and overall survival) after surgery were estimated by C-statistics, Kaplan-Meier method, univariate and multivariate Cox regression analysis, decision curve analysis, and Akaike and Bayesian information criteria. CircEGLN3 discriminated malignant from normal tissue with 97% accuracy. We generated a prognostic for the three endpoints by multivariate Cox regression analysis that included circEGLN3, circRHOBT3 and linRHOBTB3. The predictive outcome accuracy of the clinical models based on clinicopathological factors was improved in combination with this circRNA-based signature. Bootstrapping as well as Akaike and Bayesian information criteria confirmed the statistical significance and robustness of the combined models. Limitations of this study include its retrospective nature and the lack of external validation. The study demonstrated the promising potential of circRNAs as diagnostic and particularly prognostic biomarkers in ccRCC patients

    miR-199a-3p and miR-214-3p improve the overall survival prediction of muscle- invasive bladder cancer patients after radical cystectomy

    Get PDF
    To improve the clinical decision-making regarding further treatment management and follow-up scheduling for patients with muscle-invasive bladder cancer (MIBC) after radical cystectomy (RC), a better prediction accuracy of prognosis for these patients is urgently needed. The objective of this study was to evaluate the validity of differentially expressed microRNAs (miRNAs) based on a previous study as prognostic markers for overall survival (OS) after RC in models combined with clinicopathological data. The expression of six miRNAs (miR-100-5p, miR-130b-3p, miR-141-3p, miR-199a-3p, miR-205-5p, and miR-214-3p) was measured by RT-qPCR in formalin-fixed, paraffin-embedded tissue samples from 156 MIBC patients who received RC in three urological centers. Samples from 2000 to 2013 were used according to their tissue availability, with follow-up until June 2016. The patient cohort was randomly divided into a training (n = 100) and test set (n = 56). Seventy-three samples from adjacent normal tissue were used as controls. Kaplan–Meier, univariate and multivariate Cox regression, and decision curve analyses were carried out to assess the association of clinicopathological variables and miRNAs to OS. Both increased (miR-130b-3p and miR-141-3p) and reduced (miR-100-5p, miR-199a- 3p, and miR-214-3p) miRNA expressions were found in MIBC samples in comparison to nonmalignant tissue samples (P < 0.0001). miR-199a-3p and miR-214-3p were independent markers of OS in Cox regression models with the significant clinicopathological variables age, tumor status, and lymph node status. The prediction model with the clinicopathological variables was improved by these two miRNAs in both sets. The predictive benefit was confirmed by decision curve analysis. In conclusion, the inclusion of both miRNAs into models based on clinical data for the outcome prediction of MIBC patients after RC could be a valuable approach to improve prognostic accuracy

    Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality

    Get PDF
    Background: Circular RNAs (circRNAs) are a new class of RNAs with medical significance. Compared to that of linear mRNA transcripts, the stability of circRNAs against degradation owing to their circular structure is considered advantageous for their use as biomarkers. As systematic studies on the stability of circRNAs depending on the RNA integrity, determined as RNA integrity number (RIN), in clinical tissue samples are lacking, we have investigated this aspect in the present study under model and clinical conditions. Methods: Total RNA isolated from kidney cancer tissue and cell lines (A-498 and HEK-293) with different RIN after thermal degradation was used in model experiments. Further, RNA isolated from kidney cancer and prostate cancer tissue collected under routine surgical conditions, representing clinical samples with RIN ranging from 2 to 9, were examined. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis of several circRNAs (circEGLN3, circRHOBTB3, circCSNK1G3, circRNA4, and circRNA9), their corresponding linear counterparts, tissue-specific reference genes, and three microRNAs (as controls) was performed. The quantification cycles were converted into relative quantities and normalized to the expression of specific reference genes for the corresponding tissue. The effect of RIN on the expression of different RNA entities was determined using linear regression analysis, and clinical samples were classified into two groups based on RIN greater or lesser than 6. Results: The results of model experiments and clinical sample analyses showed that all relative circRNA expression gradually decreased with reduction in RIN values. The adverse effect of RIN was partially compensated after normalizing the data and limiting the samples to only those with RIN values > 6. Conclusions: Our results suggested that circRNAs are not stable in clinical tissue samples, but are subjected to degradative processes similar to mRNAs. This has not been investigated extensively in circRNA expression studies, and hence must be considered in future for obtaining reliable circRNA expression data. This can be achieved by applying the principles commonly used in mRNA expression studies

    miR-9-5p in Nephrectomy Specimens is a Potential Predictor of Primary Resistance to First-Line Treatment with Tyrosine Kinase Inhibitors in Patients with Metastatic Renal Cell Carcinoma

    Get PDF
    Approximately 20-30% of patients with metastatic renal cell carcinoma (mRCC) in first-line treatment with tyrosine kinase inhibitors (TKIs) do not respond due to primary resistance to this drug. At present, suitable robust biomarkers for prediction of a response are not available. Therefore, the aim of this study was to evaluate a panel of microRNAs (miRNAs) in nephrectomy specimens for use as predictive biomarkers for TKI resistance. Archived formalin-fixed, paraffin embedded nephrectomy samples from 60 mRCC patients treated with first-line TKIs (sunitinib, n = 51; pazopanib, n = 6; sorafenib, n = 3) were categorized into responders and non-responders. Using the standard Response Evaluation Criteria in Solid Tumors, patients with progressive disease within 3 months after the start of treatment with TKI were considered as non-responders and those patients with stable disease and complete or partial response under the TKI treatment for at least 6 months as responders. Based on a miRNA microarray expression profile in the two stratified groups of patients, seven differentially expressed miRNAs were validated using droplet digital reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) assays in the two groups. Receiver operating characteristic curve analysis and binary logistic regression of response prediction were performed. MiR-9-5p and miR-489-3p were able to discriminate between the two groups. MiR-9-5p, as the most significant miRNA, improved the correct prediction of primary resistance against TKIs in comparison to that of conventional clinicopathological variables. The results of the decision curve analyses, Kaplan-Meier analyses and Cox regression analyses confirmed the potential of miR-9-5p in the prediction of response to TKIs and the prediction of progression-free survival after the initiation of TKI treatment

    Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors

    Get PDF
    As new biomarkers, circular RNAs (circRNAs) have been largely unexplored in prostate cancer (PCa). Using an integrative approach, we aimed to evaluate the potential of circRNAs and their linear transcripts (linRNAs) to act as (i) diagnostic biomarkers for differentiation between normal and tumor tissue and (ii) prognostic biomarkers for the prediction of biochemical recurrence (BCR) after radical prostatectomy. In a first step, eight circRNAs (circATXN10, circCRIM1, circCSNK1G3, circGUCY1A2, circLPP, circNEAT1, circRHOBTB3, and circSTIL) were identified as differentially expressed via a genome-wide circRNA-based microarray analysis of six PCa samples. Additional bioinformatics and literature data were applied for this selection process. In total, 115 malignant PCa and 79 adjacent normal tissue samples were examined using robust RT-qPCR assays specifically established for the circRNAs and their linear counterparts. Their diagnostic and prognostic potential was evaluated using receiver operating characteristic curves, Cox regressions, decision curve analyses, and C-statistic calculations of prognostic indices. The combination of circATXN10 and linSTIL showed a high discriminative ability between malignant and adjacent normal tissue PCa. The combination of linGUCY1A2, linNEAT1, and linSTIL proved to be the best predictive RNA-signature for BCR. The combination of this RNA signature with five established reference models based on only clinicopathological factors resulted in an improved predictive accuracy for BCR in these models. This is an encouraging study for PCa to evaluate circRNAs and their linRNAs in an integrative approach, and the results showed their clinical potential in combination with standard clinicopathological variables

    Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation in the <it>SHOX2 </it>locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with <it>SHOX2 </it>gene expression and/or copy number alterations. An amplification of the <it>SHOX2 </it>gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples.</p> <p>Methods</p> <p><it>SHOX2 </it>expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect <it>SHOX2 </it>DNA methylation levels. <it>SHOX2 </it>expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH.</p> <p>Results</p> <p>A hypermethylation of the <it>SHOX2 </it>locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the <it>SHOX2 </it>gene showed no difference.</p> <p>Conclusions</p> <p>Frequent gene amplification correlated with hypermethylation of the <it>SHOX2 </it>gene locus. This concerted effect qualifies <it>SHOX2 </it>DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples.</p

    SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to show that SHOX2 DNA methylation is a tumor marker in patients with suspected lung cancer by using bronchial fluid aspirated during bronchoscopy. Such a biomarker would be clinically valuable, especially when, following the first bronchoscopy, a final diagnosis cannot be established by histology or cytology. A test with a low false positive rate can reduce the need for further invasive and costly procedures and ensure early treatment.</p> <p>Methods</p> <p>Marker discovery was carried out by differential methylation hybridization (DMH) and real-time PCR. The real-time PCR based HeavyMethyl technology was used for quantitative analysis of DNA methylation of SHOX2 using bronchial aspirates from two clinical centres in a case-control study. Fresh-frozen and Saccomanno-fixed samples were used to show the tumor marker performance in different sample types of clinical relevance.</p> <p>Results</p> <p>Valid measurements were obtained from a total of 523 patient samples (242 controls, 281 cases). DNA methylation of SHOX2 allowed to distinguish between malignant and benign lung disease, i.e. abscesses, infections, obstructive lung diseases, sarcoidosis, scleroderma, stenoses, at high specificity (68% sensitivity [95% CI 62-73%], 95% specificity [95% CI 91-97%]).</p> <p>Conclusions</p> <p>Hypermethylation of SHOX2 in bronchial aspirates appears to be a clinically useful tumor marker for identifying subjects with lung carcinoma, especially if histological and cytological findings after bronchoscopy are ambiguous.</p

    Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy: What Can We Learn from Past Studies?

    No full text
    With the increasing understanding of the molecular mechanism of the microRNAs (miRNAs) in prostate cancer (PCa), the predictive potential of miRNAs has received more attention by clinicians and laboratory scientists. Compared with the traditional prognostic tools based on clinicopathological variables, including the prostate-specific antigen, miRNAs may be helpful novel molecular biomarkers of biochemical recurrence for a more accurate risk stratification of PCa patients after radical prostatectomy and may contribute to personalized treatment. Tissue samples from prostatectomy specimens are easily available for miRNA isolation. Numerous studies from different countries have investigated the role of tissue-miRNAs as independent predictors of disease recurrence, either alone or in combination with other clinicopathological factors. For this purpose, a PubMed search was performed for articles published between 2008 and 2017. We compiled a profile of dysregulated miRNAs as potential predictors of biochemical recurrence and discussed their current clinical relevance. Because of differences in analytics, insufficient power and the heterogeneity of studies, and different statistical evaluation methods, limited consistency in results was obvious. Prospective multi-institutional studies with larger sample sizes, harmonized analytics, well-structured external validations, and reasonable study designs are necessary to assess the real prognostic information of miRNAs, in combination with conventional clinicopathological factors, as predictors of biochemical recurrence
    corecore