24 research outputs found

    Immune evasion by proteolytic shedding of natural killer group 2, member D ligands in Helicobacter pylori infection

    Get PDF
    BackgroundHelicobacter pylori (H. pylori) uses various strategies that attenuate mucosal immunity to ensure its persistence in the stomach. We recently found evidence that H. pylori might modulate the natural killer group 2, member 2 (NKG2D) system. The NKG2D receptor and its ligands are a major activation system of natural killer and cytotoxic T cells, which are important for mucosal immunity and tumor immunosurveillance. The NKG2D system allows recognition and elimination of infected and transformed cells, however viruses and cancers often subvert its activation. Here we aimed to identify a potential evasion of the NKG2D system in H. pylori infection.MethodsWe analyzed expression of NKG2D system genes in gastric tissues of H. pylori gastritis and gastric cancer patients, and performed cell-culture based infection experiments using H. pylori isogenic mutants and epithelial and NK cell lines.ResultsIn biopsies of H. pylori gastritis patients, NKG2D receptor expression was reduced while NKG2D ligands accumulated in the lamina propria, suggesting NKG2D evasion. In vitro, H. pylori induced the transcription and proteolytic shedding of NKG2D ligands in stomach epithelial cells, and these effects were associated with specific H. pylori virulence factors. The H. pylori-driven release of soluble NKG2D ligands reduced the immunogenic visibility of infected cells and attenuated the cytotoxic activity of effector immune cells, specifically the anti-tumor activity of NK cells.ConclusionH. pylori manipulates the NKG2D system. This so far unrecognized strategy of immune evasion by H. pylori could potentially facilitate chronic bacterial persistence and might also promote stomach cancer development by allowing transformed cells to escape immune recognition and grow unimpeded to overt malignancy

    Bacterial Indole as a Multifunctional Regulator of Klebsiella oxytoca Complex Enterotoxicity.

    Get PDF
    Gastrointestinal microbes respond to biochemical metabolites that coordinate their behaviors. Here, we demonstrate that bacterial indole functions as a multifactorial mitigator of Klebsiella grimontii and Klebsiella oxytoca pathogenicity. These closely related microbes produce the enterotoxins tilimycin and tilivalline; cytotoxin-producing strains are the causative agent of antibiotic-associated hemorrhagic colitis and have been associated with necrotizing enterocolitis of premature infants. We demonstrate that carbohydrates induce cytotoxin synthesis while concurrently repressing indole biosynthesis. Conversely, indole represses cytotoxin production. In both cases, the alterations stemmed from differ- ential transcription of npsA and npsB, key genes involved in tilimycin biosynthesis. Indole also enhances conversion of tilimycin to tilivalline, an indole analog with reduced cytotox- icity. In this context, we established that tilivalline, but not tilimycin, is a strong agonist of pregnane X receptor (PXR), a master regulator of xenobiotic detoxification and intestinal inflammation. Tilivalline binding upregulated PXR-responsive detoxifying genes and inhib- ited tubulin-directed toxicity. Bacterial indole, therefore, acts in a multifunctional manner to mitigate cytotoxicity by Klebsiella spp.: suppression of toxin production, enhanced con- version of tilimycin to tilivalline, and activation of PXR

    The 'Survivorship Passport' for childhood cancer survivors

    Get PDF
    Background: Currently, there are between 300,000 and 500,000 childhood cancer survivors (CCSs) in Europe. A significant proportion is at high risk, and at least 60% of them develop adverse health-related outcomes that can appear several years after treatment completion. Many survivors are unaware of their personal risk, and there seems to be a general lack of information among healthcare providers about pathophysiology and natural history of treatment-related complications. This can generate incorrect or delayed diagnosis and treatments. Method: The Survivorship Passport (SurPass) consists of electronic documents, which summarise the clinical history of the childhood or adolescent cancer survivor. It was developed by paediatric oncologists of the PanCare and SIOPE networks and IT experts of Cineca, together with parents, patients, and survivors' organisations within the European Union–funded European Network for Cancer research in Children and Adolescents. It consists of a template of a web-based, simply written document, translatable in all European languages, to be given to each CCS. The SurPass provides a summary of each survivor's clinical history, with detailed information about the original cancer and of treatments received, together with personalised follow-up and screening recommendations based on guidelines published by the International Guidelines Harmonization Group and PanCareSurFup. Results: The SurPass data schema contains a maximum of 168 variables and uses internationally approved nomenclature, except for radiotherapy fields, where a new classification was defined by radiotherapy experts. The survivor-specific screening recommendations are mainly based on treatment received and are automatically suggested, thanks to built-in algorithms. These may be adapted and further individualised by the treating physician in case of special disease and survivor circumstances. The SurPass was tested at the Istituto Giannina Gaslini, Italy, and received positive feedback. It is now being integrated at the institutional, regional and national level. Conclusions: The SurPass is potentially an essential tool for improved and more harmonised follow-up of CCS. It also has the potential to be a useful tool for empowering CCSs to be responsible for their own well-being and preventing adverse events whenever possible. With sufficient commitment on the European level, this solution should increase the capacity to respond more effectively to the needs of European CCS

    Fic Proteins of Campylobacter fetus subsp. venerealis Form a Network of Functional Toxin–Antitoxin Systems

    No full text
    Enzymes containing the FIC (filamentation induced by cyclic AMP) domain catalyze post-translational modifications of target proteins. In bacteria the activity of some Fic proteins resembles classical toxin–antitoxin (TA) systems. An excess of toxin over neutralizing antitoxin can enable bacteria to survive some stress conditions by slowing metabolic processes and promoting dormancy. The cell can return to normal growth when sufficient antitoxin is present to block toxin activity. Fic genes of the human and animal pathogen Campylobacter fetus are significantly associated with just one subspecies, which is specifically adapted to the urogenital tract. Here, we demonstrate that the fic genes of virulent isolate C. fetus subsp. venerealis 84-112 form multiple TA systems. Expression of the toxins in Escherichia coli caused filamentation and growth inhibition phenotypes reversible by concomitant antitoxin expression. Key active site residues involved in adenylylation by Fic proteins are conserved in Fic1, Fic3 and Fic4, but degenerated in Fic2. We show that both Fic3 and the non-canonical Fic2 disrupt assembly and function of E. coli ribosomes when expressed independently of a trans-acting antitoxin. Toxicity of the Fic proteins is controlled by different mechanisms. The first involves intramolecular regulation by an inhibitory helix typical for Fic proteins. The second is an unusual neutralization by heterologous Fic–Fic protein interactions. Moreover, a small interacting antitoxin called Fic inhibitory protein 3, which appears unrelated to known Fic antitoxins, has the novel capacity to bind and neutralize Fic toxins encoded in cis and at distant sites. These findings reveal a remarkable system of functional crosstalk occurring between Fic proteins expressed from chromosomal and extrachromosomal modules. Conservation of fic genes in other bacteria that either inhabit or establish pathology in the urogenital tract of humans and animals underscores the significance of these factors for niche-specific adaptation and virulence

    Microbial induced acid corrosion from a field perspective - Advances in process understanding and construction material development

    No full text
    Microbial induced acid corrosion is accounted for ~40 % of the degradation of subsurface wastewater infrastructure globally. While fundamental process understanding has increased significantly within the last decades, to date no sustainable building material exists, which meets the long-term requirements in such aggressive and corrosive environments. This work describes a novel model based on field studies, conducted in various Austrian sewer networks, intertwining biological, mineralogical and hydro-chemical factors. Additionally, an extensive field testing campaign over the duration of 18 months, conducted on different geopolymer concretes (GPC), particularly designed for the latter environments will be presented. Innovative GPCs were tested regarding their microstructural behavior, microbial accessibility and hydro-chemical alterations over time and compared to commercially produced cement based products, including OPC and CAC concretes. Additionally, the system specific environmental parameters, such as relevant gas concentrations (H2S, CO2, CH4), relative humidity and temperature were constantly monitored

    Interbacterial Macromolecular Transfer by the Campylobacter fetus subsp. venerealis Type IV Secretion System â–ż

    No full text
    We report here the first demonstration of intra- and interspecies conjugative plasmid DNA transfer for Campylobacter fetus. Gene regions carried by a Campylobacter coli plasmid were identified that are sufficient for conjugative mobilization to Escherichia coli and C. fetus recipients. A broader functional range is predicted. Efficient DNA transfer involves the virB9 and virD4 genes of the type IV bacterial secretion system encoded by a pathogenicity island of C. fetus subsp. venerealis. Complementation of these phenotypes from expression constructions based on the promoter of the C. fetus surface antigen protein (sap) locus was temperature dependent, and a temperature regulation of the sap promoter was subsequently confirmed under laboratory conditions. Gene transfer was sensitive to surface or entry exclusion functions in potential recipient cells carrying IncPα plasmid RP4 implying functional relatedness to C. fetus proteins. The virB/virD4 locus is also known to be involved in bacterial invasion and killing of cultured human cells in vitro. Whether specifically secreted effector proteins contribute to host colonization and infection activities is currently unknown. Two putative effector proteins carrying an FIC domain conserved in a few bacterial type III and type IV secreted proteins of pathogens were analyzed for secretion by the C. fetus or heterologous conjugative systems. No evidence for interbacterial translocation of the Fic proteins was found

    Development of Experimental Genetic Tools for Campylobacter fetus▿ †

    No full text
    Molecular analysis of the virulence mechanisms of the emerging pathogen Campylobacter fetus has been hampered by the lack of genetic tools. We report the development and functional analysis of Escherichia coli-Campylobacter shuttle vectors that are appropriate for C. fetus. Some vectors were constructed based on the known Campylobacter coli plasmid pIP1455 replicon, which confers a wide host range in Campylobacter spp. Versatility in directing gene expression was achieved by introducing a strong C. fetus promoter. The constructions carry features necessary and sufficient to detect the expression of phenotypic markers, including molecular reporter genes in both subspecies of C. fetus, while retaining function in C. jejuni. The capacity to express several gene products from different vectors in a single host can be advantageous but requires distinct plasmid replicons. To this end, replication features derived from a cryptic plasmid of C. fetus subsp. venerealis strain 4111/108, designated pCFV108, were adapted for a compatible series of constructions. The substitution of the C. coli replication elements reduced vector size while apparently limiting the host range to C. fetus. The complementation of a ciprofloxacin-resistant mutant phenotype via vector-driven gyrA expression was verified. Cocultivation demonstrated that shuttle vectors based on the pCFV108 replicon were compatible with pIP1455 replication functions, and the stable maintenance of two plasmids in a C. fetus subsp. venerealis host over several months was observed. The application of both vector types will facilitate the investigation of the genetics and cellular interactions of the emerging pathogen C. fetus

    A Genomic Island Defines Subspecies-Specific Virulence Features of the Host-Adapted Pathogen Campylobacter fetus subsp. venerealis▿ †

    No full text
    The pathogen Campylobacter fetus comprises two subspecies, C. fetus subsp. fetus and C. fetus subsp. venerealis. Although these taxa are highly related on the genome level, they are adapted to distinct hosts and tissues. C. fetus subsp. fetus infects a diversity of hosts, including humans, and colonizes the gastrointestinal tract. In contrast, C. fetus subsp. venerealis is largely restricted to the bovine genital tract, causing epidemic abortion in these animals. In light of their close genetic relatedness, the specific niche preferences make the C. fetus subspecies an ideal model system to investigate the molecular basis of host adaptation. In this study, a subtractive-hybridization approach was applied to the genomes of the subspecies to identify different genes potentially underlying this specificity. The comparison revealed a genomic island uniquely present in C. fetus subsp. venerealis that harbors several genes indicative of horizontal transfer and that encodes the core components necessary for bacterial type IV secretion. Macromolecular transporters of this type deliver effector molecules to host cells, thereby contributing to virulence in various pathogens. Mutational inactivation of the putative secretion system confirmed its involvement in the pathogenicity of C. fetus subsp. venerealis

    Gastric Helicobacter pylori Infection Affects Local and Distant Microbial Populations and Host Responses

    Get PDF
    Helicobacter pylori is a late-in-life human pathogen with potential early-life benefits. Although H. pylori is disappearing from the human population, little is known about the influence of H. pylori on the host’s microbiota and immunity. Studying the interactions of H. pylori with murine hosts over 6 months, we found stable colonization accompanied by gastric histologic and antibody responses. Analysis of gastric and pulmonary tissues revealed increased expression of multiple immune response genes, conserved across mice and over time in the stomach and more transiently in the lungs. Moreover, H. pylori infection led to significantly different population structures in both the gastric and intestinal microbiota. These studies indicate that H. pylori influences the microbiota and host immune responses not only locally in the stomach, but distantly as well, affecting important target organs
    corecore