81 research outputs found

    SNOWTRAN: A Fast Radiative Transfer Model for Polar Hyperspectral Remote Sensing Applications

    Get PDF
    In this work, we develop a software suite for studies of atmosphere–underlying SNOW-spaceborne optical receiver light TRANsmission calculations (SNOWTRAN) with applications for the solution of forward and inverse radiative transfer problems in polar regions. Assuming that the aerosol load is extremely low, the proposed theory does not require the numerical procedures for the solution of the radiative transfer equation and is based on analytical equations for the spectral nadir reflectance and simple approximations for the local optical properties of atmosphere and snow. The developed model is validated using EnMAP and PRISMA spaceborne imaging spectroscopy data close to the Concordia research station in Antarctica. A new, fast technique for the determination of the snow grain size and assessment of the snowpack vertical inhomogeneity is then proposed and further demonstrated on EnMAP imagery over the Aviator Glacier and in the vicinity of the Concordia research station in Antarctica. The results revealed a large increase in precipitable water vapor at the Concordia research station in February 2023 that was linked to a warming event and a four times larger grain size at Aviator Glacier compared with Dome C

    Analyses of the Impact of Soil Conditions and Soil Degradation on Vegetation Vitality and Crop Productivity Based on Airborne Hyperspectral VNIR–SWIR–TIR Data in a Semi-Arid Rainfed Agricultural Area (Camarena, Central Spain)

    Get PDF
    Soils are an essential factor contributing to the agricultural production of rainfed crops such as barley and triticale cereals. Changing environmental conditions and inadequate land management are endangering soil quality and productivity and, in turn, crop quality and productivity are affected. Advances in hyperspectral remote sensing are of great use for the spatial characterization and monitoring of the soil degradation status, as well as its impact on crop growth and agricultural productivity. In this study, hyperspectral airborne data covering the visible, near-infrared, short-wave infrared, and thermal infrared (VNIR–SWIR–TIR, 0.4–12 µm) were acquired in a Mediterranean agricultural area of central Spain and used to analyze the spatial differences in vegetation vitality and grain yield in relation to the soil degradation status. Specifically, leaf area index (LAI), crop water stress index (CWSI), and the biomass of the crop yield are derived from the remote sensing data and discussed regarding their spatial differences and relationship to a classification of erosion and accumulation stages (SEAS) based on previous remote sensing analyses during bare soil conditions. LAI and harvested crop biomass yield could be well estimated by PLS regression based on the hyperspectral and in situ reference data (R2 of 0.83, r of 0.91, and an RMSE of 0.2 m2 m−2 for LAI and an R2 of 0.85, r of 0.92, and an RMSE of 0.48 t ha−1 for grain yield). In addition, the soil erosion and accumulation stages (SEAS) were successfully predicted based on the canopy spectral signal of vegetated crop fields using a random forest machine learning approach. Overall accuracy was achieved above 71% by combining the VNIR–SWIR–TIR canopy reflectance and emissivity of the growing season with topographic information after reducing the redundancy in the spectral dataset. The results show that the estimated crop traits are spatially related to the soil’s degradation status, with shallow and highly eroded soils, as well as sandy accumulation zones being associated with areas of low LAI, crop yield, and high crop water stress. Overall, the results of this study illustrate the enormous potential of imaging spectroscopy for a combined analysis of the plant-soil system in the frame of land and soil degradation monitoring

    High-Resolution Methane Mapping with the EnMAP Satellite Imaging Spectroscopy Mission

    Get PDF
    Methane (CH4) mitigation from anthropogenic sources such as in the production and transport of fossil fuels has been found as one of the most promising strategies to curb global warming in the near future. Satellite-based imaging spectrometers have demonstrated to be well-suited to detect and quantify these emissions at high spatial resolution, which allows the attribution of plumes to sources. The PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite mission (ASI, Italy) has been successfully used for this application, and the recently launched Environmental Mapping and Analysis Program (EnMAP) mission (DLR/GFZ, Potsdam, Germany) presents similar spatial and spectral characteristics (30-m spatial resolution, 30-km swath, about 8-nm spectral sampling at 2300 nm). In this work, we investigate the potential and limitations of EnMAP for CH4 remote sensing, using PRISMA as a benchmark to deduce its added value. We analyze the spectral and radiometric performance of EnMAP in the 2300-nm region used for CH4 retrievals acquired using the matched-filter method. Our results show that in arid areas, EnMAP spectral resolution is about 2.7 nm finer and the signal-to-noise ratio values are approximately twice as large, which leads to an improvement in retrieval performance. Several EnMAP examples of plumes from different sources around the world with flux rate values ranging from 1 to 20 t/h are illustrated. We show plumes from sectors such as onshore oil and gas (O&G) and coal mining, but also from more challenging sectors such as landfills and offshore O&G. We detect two plumes in a close-to-sunglint configuration dataset with unprecedented flux rates of about 1 t/h, which suggests that the detection limit in offshore areas can be considerably lower under favorable conditions

    Evaluation of Airborne HySpex and Spaceborne PRISMA Hyperspectral Remote Sensing Data for Soil Organic Matter and Carbonates Estimation

    Get PDF
    Remote sensing and soil spectroscopy applications are valuable techniques for soil property estimation. Soil organic matter (SOM) and calcium carbonate are important factors in soil quality, and although organic matter is well studied, calcium carbonates require more investigation. In this study, we validated the performance of laboratory soil spectroscopy for estimating the aforementioned properties with referenced in situ data. We also examined the performance of imaging spectroscopy sensors, such as the airborne HySpex and the spaceborne PRISMA. For this purpose, we applied four commonly used machine learning algorithms and six preprocessing methods for the evaluation of the best fitting algorithm.. The study took place over crop areas of Amyntaio in Northern Greece, where extensive soil sampling was conducted. This is an area with a very variable mineralogical environment (from lignite mine to mountainous area). The SOM results were very good at the laboratory scale and for both remote sensing sensors with R2 = 0.79 for HySpex and R2 = 0.76 for PRISMA. Regarding the calcium carbonate estimations, the remote sensing accuracy was R2 = 0.82 for HySpex and R2 = 0.36 for PRISMA. PRISMA was still in the commissioning phase at the time of the study, and therefore, the acquired image did not cover the whole study area. Accuracies for calcium carbonates may be lower due to the smaller sample size used for the modeling procedure. The results show the potential for using quantitative predictions of SOM and the carbonate content based on soil and imaging spectroscopy at the air and spaceborne scales and for future applications using larger datasets

    First Retrievals of Surface and Atmospheric Properties Using EnMAP Measurements over Antarctica

    Get PDF
    The paper presents the first retrievals of clean snow properties using spaceborne hyperspectral observations via the Environmental Mapping and Analysis Program (EnMAP). The location close to the Concordia station at the Dome C Plateau (Antarctica) was selected. At this location, the atmospheric effects (except molecular light scattering and absorption) are weak, and the simplified atmospheric correction scheme could be applied. The ice grain size, snow specific surface area, and snow spectral and broadband albedos were retrieved using single-view EnMAP measurements. In addition, we propose a technique to retrieve trace gas concentrations (e.g., water vapor and ozone) from EnMAP observations over the snow surfaces. A close correspondence of satellite and ground-measured parameters was found

    A Spectral Transfer Function to Harmonize Existing Soil Spectral Libraries Generated by Different Protocols

    Get PDF
    Soil spectral libraries (SSLs) are important big-data archives (spectra associated with soil properties) that are analyzed via machine-learning algorithms to estimate soil attributes. Since different spectral measurement protocols are applied when constructing SSLs, it is necessary to examine harmonization techniques to merge the data. In recent years, several techniques for harmonization have been proposed, among which the internal soil standard (ISS) protocol is the most largely applied and has demonstrated its capacity to rectify systematic effects during spectral measurements. Here, we postulate that a spectral transfer function (TF) can be extracted between existing (old) SSLs if a subset of samples from two (or more) different SSLs are remeasured using the ISS protocol. A machine-learning TF strategy was developed, assembling random forest (RF) spectral-based models to predict the ISS spectral condition using soil samples from two existing SSLs. These SSLs had already been measured using different protocols without any ISS treatment the Brazilian (BSSL, generated in 2019) and the European (LUCAS, generated in 2009-2012) SSLs. To verify the TF's ability to improve the spectral assessment of soil attributes after harmonizing the different SSLs' protocols, RF spectral-based models for estimating organic carbon (OC) in soil were developed. The results showed high spectral similarities between the ISS and the ISS-TF spectral observations, indicating that post-ISS rectification is possible. Furthermore, after merging the SSLs with the TFs, the spectral-based assessment of OC was considerably improved, from R2 = 0.61, RMSE (g/kg) = 12.46 to R2 = 0.69, RMSE (g/kg) = 11.13. Given our results, this paper enhances the importance of soil spectroscopy by contributing to analyses in remote sensing, soil surveys, and digital soil mapping

    User Inquiries and Ground Segment Operation Activities

    Get PDF
    Since the beginning of the operational phase in November 2022, the Environmental Mapping and Analysis Programm (EnMAP) has gathered substantial interest within the Earth Observation community, counting a considerable number of more than 1800 registered users from over 80 different countries across the globe. The EnMAP data archive is also used very frequently by users with ordering and downloading approx. 2000 tiles per months. Any science user can submit its (his/her) own observations request via the EnMAP Instrument Planning Portal (IPP, https://planning.enmap.org/, also reachable through the official website www.enmap.org), by submitting a proposal. The IP portal also provides access links to the entire EnMAP data archive via the EOWEB Geoportal. The number of users requesting future observations varies significantly based on geographic location. Notably, Europe sees the highest demand for the EnMAP mission, leading to challenges such as conflicting orders for areas within the same orbit. This convergence has introduced complexities in data acquisition, particularly for time series and orchestration of field campaigns. To ensure (increase) regular data acquisition and boost mission efficiency, a "Foreground Mission" has been introduced. This entails prioritized acquisition of extended 990-kilometer flightlines (stripes) over Europe, with a specific focus on Germany. This strategic approach aims to improve data coverage in Germany and streamlines recurring acquisitions along key transects. First this informative presentation provides an assessment of ground segment operations, with special attention given to user feedback and inquiries. Along the way, it outlines the most prevalent user concerns and highlights the strategic factors involved in requesting observations. As second part the audience gains deeper insight into the newly implemented Foreground Mission initiative

    Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century

    Get PDF
    Spectroscopic measurements of soil samples are reliable because they are highly repeatable and reproducible. They characterise the samples' mineral-organic composition. Estimates of concentrations of soil constituents are inevitably less precise than estimates obtained conventionally by chemical analysis. But the cost of each spectroscopic estimate is at most one-tenth of the cost of a chemical determination. Spectroscopy is cost-effective when we need many data, despite the costs and errors of calibration. Soil spectroscopists understand the risks of over-fitting models to highly dimensional multivariate spectra and have command of the mathematical and statistical methods to avoid them. Machine learning has fast become an algorithmic alternative to statistical analysis for estimating concentrations of soil constituents from reflectance spectra. As with any modelling, we need judicious implementation of machine learning as it also carries the risk of over-fitting predictions to irrelevant elements of the spectra. To use the methods confidently, we need to validate the outcomes with appropriately sampled, independent data sets. Not all machine learning should be considered 'black boxes'. Their interpretability depends on the algorithm, and some are highly interpretable and explainable. Some are difficult to interpret because of complex transformations or their huge and complicated network of parameters. But there is rapidly advancing research on explainable machine learning, and these methods are finding applications in soil science and spectroscopy. In many parts of the world, soil and environmental scientists recognise the merits of soil spectroscopy. They are building spectral libraries on which they can draw to localise the modelling and derive soil information for new projects within their domains. We hope our article gives readers a more balanced and optimistic perspective of soil spectroscopy and its future. Highlights Spectroscopy is reliable because it is a highly repeatable and reproducible analytical technique. Spectra are calibrated to estimate concentrations of soil properties with known error. Spectroscopy is cost-effective for estimating soil properties. Machine learning is becoming ever more powerful for extracting accurate information from spectra, and methods for interpreting the models exist. Large libraries of soil spectra provide information that can be used locally to aid estimates from new samples
    • …
    corecore