47 research outputs found

    Growth Plate Injuries of the Lower Extremity: Case Examples and Lessons Learned.

    Get PDF
    BackgroundThe presence of growth plates at the ends of long bones makes fracture management in children unique in terms of the potential risk of developing angular deformities and growth arrest.Materials and methodsWe discuss three distinct cases depicting various aspects of physeal injury of the lower extremity in children.ResultsThe case illustrations chosen represent distinct body regions and different physeal injuries: Salter-Harris II fracture of the distal femur, Salter-Harris VI perichondrial injury of the medial aspect of the knee region, and Salter-Harris III fracture of the distal tibia. The clinical presentation, pertinent history and physical findings, imaging studies, management, and subsequent course are presented.ConclusionsGrowth plate injuries of the lower extremity require a high index of suspicion and close monitoring during skeletal growth. Early recognition and proper management of these injuries can minimize long term morbidity. The treatment plan should be individualized after a comprehensive analysis of the injury pattern in each patient. Establishing a long term treatment plan and discussing the prognosis of these injuries with the child's caretakers is imperative

    Limb Lengthening and Reconstruction Society AIM Index Reliably Assesses Lower Limb Deformity

    Get PDF
    Abstract Background Although several systems exist for classifying specific limb deformities, there currently are no validated rating scales for evaluating the complexity of general lower limb deformities. Accurate assessment of the complexity of a limb deformity is essential for successful treatment. A committee of the Limb Lengthening and Reconstruction Society (LLRS) therefore developed the LLRS AIM Index to quantify the severity of a broad range of lower extremity deformities in seven domains. Questions/Purposes We addressed two questions: (1) Does the LLRS AIM Index show construct validity by correlating with rankings of case complexity? (2) Does the LLRS AIM Index show sufficient interrater and intrarater reliabilities? Methods We had eight surgeons evaluate 10 fictionalized patients with various lower limb deformities. First, they ranked the cases from simplest to most complex, and then they rated the cases using the LLRS AIM Index. Two or more weeks later, they rated the cases again. We assessed reliability using the Kendall's W test. Results Raters were consistent in their rankings of case complexity (W = 0.33). Patient rankings also correlated with both sets of LLRS AIM ratings (r 2 = 0.25; r 2 = 0.23). The LLRS AIM Index showed interrater reliability with an intraclass correlation (ICC) of 0.97 for Trial 1 and 0.98 for Trial 2 and intrarater reliability with an ICC of 0.94. The LLRS AIM Index ratings also were highly consistent between the attending surgeons and surgeons-in-training (ICC = 0.91). Conclusions Our preliminarily observations suggest that the LLRS AIM Index reliably classifies the complexity of lower limb deformities in and between observers

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore