8 research outputs found

    Hyper-Nutrient Enrichment Status in the Sabalan Lake, Iran

    No full text
    Lakes/reservoirs are rapidly deteriorating from cultural eutrophication due to anthropogenic factors. In this study, we aimed to (1) explore nutrient levels in the Sabalan dam reservoir (SDR) of northwest Iran, (2) determine the reservoir water fertility using the total phosphorus (TP) based and total nitrogen (TN) based Carlson trophic state indices, and (3) specify primary limiting factors for the reservoir eutrophication. Our field observations showed a state of hyper-nutrient enrichment in the SDR. The highest variation of TN in the reservoir water column happened when the reservoir was severely stratified (in August) while the highest variation of TP took place when the thermocline was attenuated with the deepening of the epilimnion (in October). Both TP and TN based trophic indicators classified the SDR as a hypereutrophic lake. TN:TP molar ratio averaged at the epilimnion indicated a P–deficiency in the reservoir during warm months whilst it suggested a co–deficiency of P and N in cold months. Given the hyper-nutrient enrichment state in the reservoir, other drivers such as water residence time (WRT) can also act as the main contributor of eutrophication in the SDR. We found that WRT in the SDR varied from hundreds to thousands of days, which was much longer than that of other reservoirs/lakes with the same and even much greater storage capacity. Therefore, both hyper-nutrient enrichment and WRT mainly controlled eutrophication in the reservoir. Given time consuming and expensive management practices for reducing nutrients in the watershed, changes in the SDR operation are suggested to somewhat recover its hypereutrophic state in the short-term. However, strategic long-term recovery plans are required to reduce the transition of nutrients from the watershed to the SDR

    Complex dynamics of water quality mixing in a warm mono-mictic reservoir

    No full text
    Cycling of water quality constituents in lakes is affected by thermal stratification and homo-thermal conditions and other factors such as oligotrophication, eutrophication, and microbial activities. In addition, hydrological variability can cause greater differences in water residence time and cycling of constituents in man-made lakes (reservoirs) than in natural lakes. Thus, investigations are needed on vertical mixing of constituents in new impounded reservoirs, especially those constructed to supply domestic water. In this study, sampling campaigns were conducted in the Sabalan reservoir, Iran, to investigate vertical changes in constituent concentrations during the year in periods with thermal stratification and homo-thermal conditions. The results revealed incomplete mixing of constituents, even during cold months when the reservoir was homo-thermal. These conditions interacted to create a bottom-up regulated reservoir with sediment that released settled pollutants, impairing water quality in the Sabalan reservoir during both thermal stratification and homo-thermal conditions. Analysis of total nitrogen and total phosphorus concentrations revealed that the reservoir was eutrophic. External pollution loads, internal cycling of pollutants diffusing out from bottom sediments, reductions in inflow to the reservoir, and reservoir operations regulated vertical mixing and concentrations of constituents in the Sabalan reservoir throughout the year

    Complex dynamics of water quality mixing in a warm mono-mictic reservoir

    No full text
    Abstract Cycling of water quality constituents in lakes is affected by thermal stratification and homo-thermal conditions and other factors such as oligotrophication, eutrophication, and microbial activities. In addition, hydrological variability can cause greater differences in water residence time and cycling of constituents in man-made lakes (reservoirs) than in natural lakes. Thus, investigations are needed on vertical mixing of constituents in new impounded reservoirs, especially those constructed to supply domestic water. In this study, sampling campaigns were conducted in the Sabalan reservoir, Iran, to investigate vertical changes in constituent concentrations during the year in periods with thermal stratification and homo-thermal conditions. The results revealed incomplete mixing of constituents, even during cold months when the reservoir was homo-thermal. These conditions interacted to create a bottom-up regulated reservoir with sediment that released settled pollutants, impairing water quality in the Sabalan reservoir during both thermal stratification and homo-thermal conditions. Analysis of total nitrogen and total phosphorus concentrations revealed that the reservoir was eutrophic. External pollution loads, internal cycling of pollutants diffusing out from bottom sediments, reductions in inflow to the reservoir, and reservoir operations regulated vertical mixing and concentrations of constituents in the Sabalan reservoir throughout the year

    A non-threshold model to estimate carcinogenic risk of nitrate-nitrite in drinking water

    No full text
    Understanding nitrate–nitrite (3−2) levels in drinking water and associated non-carcinogenic and carcinogenic health risks are essential to protect public health safety. The non-carcinogenic risk assessment of 3–2 in drinking water has been well documented, however, there remains a knowledge gap in understanding and quantification of the carcinogenic risk of 3–2. This study develops a non-threshold–based model for estimation of carcinogenic risk of 3–2 ingested through drinking water for a densely populated urban area with a case study of Tehran's potable water (TPW). In this regard, 200 tap water samples from different parts of the city were taken in wet (May 2018) and dry (October 2018) periods to determine 3– concentration in the TPW and the associated health risks across different grounds of end-users. Sampling results reveal higher concentrations of 3– during the dry period, which can be associated to the significant contribution of nitrogen–rich groundwater in supplying the city's water demands during the dry period. Findings suggest concerns associated with the non-carcinogenic risk of 3– in the TPW, especially for children. More than 55% of the samples taken during the dry period show a positive carcinogenic risk for different groups of end-users (68% for men, 72% for women, and 56% for children) whilst just 8% of the samples are deemed unsafe with regards to the permissible level in drinking water, i.e. 50 mg/L. Approximately, 45% of the samples taken during the wet period show a positive carcinogenic risk for adults whilst the maximum concentration of was about 23 mg/L, i.e. two times less than the permissible level in drinking water. The findings emphasize on the necessity of reducing the permissible level of in drinking water, set out by the existing water quality standards, to safeguard public health against the carcinogenic risks. The model developed within this study recommends the urgent need for reduction of level in Tehran's water resources to protect public health of over 13 M population who incessantly use the TPW

    Metal contamination assessment in water column and surface sediments of a warm monomictic man-made lake:Sabalan Dam Reservoir, Iran

    No full text
    Abstract In this study, metal concentrations in the water column and surface sediment of the Sabalan Dam Reservoir (SDR) were determined. Moreover, heavy metal pollution index (HPI), contamination index (CI), heavy metal evaluation index (HEI), enrichment factor (EF), geo-accumulation index (Igeo), sediment quality guidelines (SQGs), consensus-based SQGs (C-BSQGs), and mean probable effect concentration quotients (mPECQs) were evaluated for water and sediments of SDR. It was observed that metal concentrations in river entry sediment were lower, but those in river entry water were higher than corresponding values in the vicinity of the dam structure. The HPI values of water samples taken from 10 m depth in the center of SDR exceeded the critical limit, due to high concentrations of arsenic. However, according to CI, the reservoir water was not contaminated. The HEI values indicated contamination of SDR water with metals at 10 m depth. A comparison of water quality indices revealed that HEI was the most reliable index in water quality assessment, while CI and HPI were not sufficiently accurate. For SQGs, As and Cu concentrations in sediments were high, but mPECQ, Igeo, and EF revealed some degree of sediment pollution in SDR. The calculated EF values suggested minor anthropogenic enrichment of sediment with Fe, Co, V, and Ni; moderate anthropogenic enrichment with As and Mn; and moderate to severe anthropogenic enrichment with Cu. A comparison of SQG values revealed that the threshold effect and probable effect levels were the most reliable metrics in the assessment of sediment toxicity. Statistical analysis indicated similarities between metal concentrations in the center of the reservoir and near to the dam structure, as a result of similar sediment deposition behavior at these points, while higher flow velocity at the river entry point limited deposition of fine particles and associated metals

    Alarming carcinogenic and non-carcinogenic risk of heavy metals in Sabalan dam reservoir, Northwest of Iran

    No full text
    Abstract This research aims to assess contamination status of water and sediment in Sabalan dam reservoir (SDR) and evaluate the impact of water withdrawal depths on the carcinogenic and non-carcinogenic risks of metals for exposed people. Results of metal pollution indices revealed some degree of pollution in water and sediment of the reservoir, especially associated with arsenic. Risk assessment of metals in water of the SDR for non-carcinogenic materials through different scenarios of water withdrawal depth revealed that consuming water from the depth of 10 m can be somewhat troublesome to human health. The carcinogenic risk of arsenic from depth of 10 m of the reservoir was about four times greater than that from water surface. Minimum carcinogenic risk of consuming water in the reservoir was found to be 1.69 × 10E-4, which is higher than the maximum limit proposed by the U.S. EPA, indicating the water consumption from the SDR can result in harmful effects on human health
    corecore