253 research outputs found

    Short term effects of milrinone on biomarkers of necrosis, apoptosis, and inflammation in patients with severe heart failure

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Inotropes are associated with adverse outcomes in heart failure (HF), raising concern they may accelerate myocardial injury. Whether biomarkers of myocardial necrosis, inflammation and apoptosis change in response to acute milrinone administration is not well established.</p> <p>Methods</p> <p>Ten patients with severe HF and reduced cardiac output who were to receive milrinone were studied. Blood samples were taken just before initiation of milrinone and after 24 hours of infusion. Dosing was at the discretion of the patient's attending physician (range 0.25–0.5 mcg/kg/min). Plasma measurements of troponin, myoglobin, N-terminal-pro-BNP, interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand were performed at both time points.</p> <p>Results</p> <p>Troponin was elevated at baseline in all patients (mean 0.1259 ± 0.17 ng/ml), but there was no significant change after 24 hours of milrinone (mean 0.1345 ± 0.16 ng/ml, p = 0.44). There were significant improvements in interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand (all p < 0.05) indicative of reduced inflammatory and apoptotic signaling compared to baseline.</p> <p>Conclusion</p> <p>In conclusion, among patients with severe HF and low cardiac output, ongoing myocardial injury is common, and initiation of milrinone did not result in exacerbation of myocardial injury but instead was associated with salutary effects on other biomarkers.</p

    Subendocardial contractile impairment in chronic ischemic myocardium: assessment by strain analysis of 3T tagged CMR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to quantify myocardial strain on the subendocardial and epicardial layers of the left ventricle (LV) using tagged cardiovascular magnetic resonance (CMR) and to investigate the transmural degree of contractile impairment in the chronic ischemic myocardium.</p> <p>Methods</p> <p>3T tagged CMR was performed at rest in 12 patients with severe coronary artery disease who had been scheduled for coronary artery bypass grafting. Circumferential strain (C-strain) at end-systole on subendocardial and epicardial layers was measured using the short-axis tagged images of the LV and available software (Intag; Osirix). The myocardial segment was divided into stenotic and non-stenotic segments by invasive coronary angiography, and ischemic and non-ischemic segments by stress myocardial perfusion scintigraphy. The difference in C-strain between the two groups was analyzed using the Mann-Whitney U-test. The diagnostic capability of C-strain was analyzed using receiver operating characteristics analysis.</p> <p>Results</p> <p>The absolute subendocardial C-strain was significantly lower for stenotic (-7.5 ± 12.6%) than non-stenotic segment (-18.8 ± 10.2%, p < 0.0001). There was no difference in epicardial C-strain between the two groups. Use of cutoff thresholds for subendocardial C-strain differentiated stenotic segments from non-stenotic segments with a sensitivity of 77%, a specificity of 70%, and areas under the curve (AUC) of 0.76. The absolute subendocardial C-strain was significantly lower for ischemic (-6.7 ± 13.1%) than non-ischemic segments (-21.6 ± 7.0%, p < 0.0001). The absolute epicardial C-strain was also significantly lower for ischemic (-5.1 ± 7.8%) than non-ischemic segments (-9.6 ± 9.1%, p < 0.05). Use of cutoff thresholds for subendocardial C-strain differentiated ischemic segments from non-ischemic segments with sensitivities of 86%, specificities of 84%, and AUC of 0.86.</p> <p>Conclusions</p> <p>Analysis of tagged CMR can non-invasively demonstrate predominant impairment of subendocardial strain in the chronic ischemic myocardium at rest.</p

    Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy

    Get PDF
    Studies of myocardial metabolism have reported that contractile performance at a given myocardial oxygen consumption (MVO2) can be lower when the heart is oxidizing fatty acids rather than glucose or lactate. The objective of this study is to assess the prognostic value of myocardial metabolic phenotypes in identifying non-responders among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids (FFA), and 22 amino acids were obtained from 19 male and 2 female patients (mean age 56 ± 16) with NIDCM undergoing CRT. Metabolite fluxes/MVO2 and extraction fractions were calculated. Flux balance analysis (FBA) was performed with MetaFluxNet 1.8 on a metabolic network of the cardiac mitochondria (189 reactions, 230 metabolites) reconstructed from mitochondrial proteomic data (615 proteins) from human heart tissue. Non-responders based on left ventricular ejection fraction (LVEF) demonstrated a greater mean FFA extraction fraction (35% ± 17%) than responders [18 ± 10%, p = 0.0098, area under the estimated ROC curve (AUC) was 0.8238, S.E. 0.1115]. Calculated adenosine triphosphate (ATP)/MVO2 using FBA correlated with change in New York Heart Association (NYHA) class (rho = 0.63, p = 0.0298; AUC = 0.8381, S.E. 0.1316). Non-responders based on both LVEF and NYHA demonstrated a greater mean FFA uptake/MVO2 (0.115 ± 0.112) than responders (0.034 ± 0.030, p = 0.0171; AUC = 0.8593, S.E. 0.0965). Myocardial FFA flux and calculated maximal ATP synthesis flux using FBA may be helpful as biomarkers in identifying non-responders among NIDCM patients undergoing CRT

    Should public health interventions aimed at reducing childhood overweight and obesity be gender-focused?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overweight in childhood is a major public health concern that calls for immediate preventative action. An increasing number of reports suggest that gender specific approaches to prevention may be more effective. However, there is a paucity of information to guide gender-sensitive health promotion and population health interventions for the prevention of overweight in childhood. In the present study, we sought to determine gender-differentials in overweight and underlying behaviors, nutrition and physical activity, among pre-adolescents in Alberta, Canada, to inform the discussion on gender-focused interventions for chronic disease prevention.</p> <p>Methods</p> <p>In 2008, we surveyed 3421 grade five students and their parents of 148 randomly selected schools. Students completed the Harvard food frequency questionnaire, questions on physical activities, and had their height and weight measured. Parents completed questions on socio-economic background and child's lifestyle. We applied multilevel regression methods to assess gender differentials in overweight, nutrition and physical activity.</p> <p>Results</p> <p>Overall, the prevalence of overweight was slightly higher among boys (29.1%) than girls (27.9%) with more pronounced differences in towns and urban geographies. Boys reported to be much more physically active relative to girls (OR = 2.12, 95% CI: 1.73-2.60). Diets of boys, relative to those of girls, reportedly constituted more fat and were less likely to meet the recommendation of 6 daily servings of vegetables and fruits (OR = 0.81, 95% CI: 0.71-0.93).</p> <p>Conclusion</p> <p>Our findings confirm the existence of gender differences in physical activity and nutrition, and support gender-focused health promotion whereby priority is given to physical activity among girls and to healthy eating among boys.</p

    Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless ‘Frank–Starling Gain’ index

    Get PDF
    This paper briefly recapitulates the Frank–Starling law of the heart, reviews approaches to establishing diastolic and systolic force–length behaviour in intact isolated cardiomyocytes, and introduces a dimensionless index called ‘Frank–Starling Gain’, calculated as the ratio of slopes of end-systolic and end-diastolic force–length relations. The benefits and limitations of this index are illustrated on the example of regional differences in Guinea pig intact ventricular cardiomyocyte mechanics. Potential applicability of the Frank–Starling Gain for the comparison of cell contractility changes upon stretch will be discussed in the context of intra- and inter-individual variability of cardiomyocyte properties

    Oral treatment with a zinc complex of acetylsalicylic acid prevents diabetic cardiomyopathy in a rat model of type-2 diabetes: activation of the Akt pathway.

    Get PDF
    BACKGROUND: Type-2 diabetics have an increased risk of cardiomyopathy, and heart failure is a major cause of death among these patients. Growing evidence indicates that proinflammatory cytokines may induce the development of insulin resistance, and that anti-inflammatory medications may reverse this process. We investigated the effects of the oral administration of zinc and acetylsalicylic acid, in the form of bis(aspirinato)zinc(II)-complex Zn(ASA)2, on different aspects of cardiac damage in Zucker diabetic fatty (ZDF) rats, an experimental model of type-2 diabetic cardiomyopathy. METHODS: Nondiabetic control (ZL) and ZDF rats were treated orally with vehicle or Zn(ASA)2 for 24 days. At the age of 29-30 weeks, the electrical activities, left-ventricular functional parameters and left-ventricular wall thicknesses were assessed. Nitrotyrosine immunohistochemistry, TUNEL-assay, and hematoxylin-eosin staining were performed. The protein expression of the insulin-receptor and PI3K/AKT pathway were quantified by Western blot. RESULTS: Zn(ASA)2-treatment significantly decreased plasma glucose concentration in ZDF rats (39.0 +/- 3.6 vs 49.4 +/- 2.8 mM, P < 0.05) while serum insulin-levels were similar among the groups. Data from cardiac catheterization showed that Zn(ASA)2 normalized the increased left-ventricular diastolic stiffness (end-diastolic pressure-volume relationship: 0.064 +/- 0.008 vs 0.084 +/- 0.014 mmHg/microl; end-diastolic pressure: 6.5 +/- 0.6 vs 7.9 +/- 0.7 mmHg, P < 0.05). Furthermore, ECG-recordings revealed a restoration of prolonged QT-intervals (63 +/- 3 vs 83 +/- 4 ms, P < 0.05) with Zn(ASA)2. Left-ventricular wall thickness, assessed by echocardiography, did not differ among the groups. However histological examination revealed an increase in the cardiomyocytes' transverse cross-section area in ZDF compared to the ZL rats, which was significantly decreased after Zn(ASA)2-treatment. Additionally, a significant fibrotic remodeling was observed in the diabetic rats compared to ZL rats, and Zn(ASA)2-administered ZDF rats showed a similar collagen content as ZL animals. In diabetic hearts Zn(ASA)2 significantly decreased DNA-fragmentation, and nitro-oxidative stress, and up-regulated myocardial phosphorylated-AKT/AKT protein expression. Zn(ASA)2 reduced cardiomyocyte death in a cellular model of oxidative stress. Zn(ASA)2 had no effects on altered myocardial CD36, GLUT-4, and PI3K protein expression. CONCLUSIONS: We demonstrated that treatment of type-2 diabetic rats with Zn(ASA)2 reduced plasma glucose-levels and prevented diabetic cardiomyopathy. The increased myocardial AKT activation could, in part, help to explain the cardioprotective effects of Zn(ASA)2. The oral administration of Zn(ASA)2 may have therapeutic potential, aiming to prevent/treat cardiac complications in type-2 diabetic patients

    The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology

    Get PDF
    Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future
    corecore