253 research outputs found

    Precision Determination of the Neutron Spin Structure Function g1n

    Full text link
    We report on a precision measurement of the neutron spin structure function g1ng^n_1 using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2, we obtain 0.0140.7g1n(x)dx=0.036±0.004(stat)±0.005(syst)\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst) at an average Q2=5(GeV/c)2Q^2=5 (GeV/c)^2. We find relatively large negative values for g1ng^n_1 at low xx. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral 01g1n(x)dx\int^1_0 g^n_1(x)dx, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let

    Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime

    Full text link
    We present measurements of the ep->ep pi^0 cross section extracted at two values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson Lab Hall A. The kinematic range allows to study the evolution of the extracted hadronic tensor as a function of Q^2 and W. Results will be confronted with Regge inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering has also been attempted

    New Measurement of Parity Violation in Elastic Electron-Proton Scattering and Implications for Strange Form Factors

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The result is A = -15.05 +- 0.98(stat) +- 0.56(syst) ppm at the kinematic point theta_lab = 12.3 degrees and Q^2 = 0.477 (GeV/c)^2. The measurement implies that the value for the strange form factor (G_E^s + 0.392 G_M^s) = 0.025 +- 0.020 +- 0.014, where the first error is experimental and the second arises from the uncertainties in electromagnetic form factors. This measurement is the first fixed-target parity violation experiment that used either a `strained' GaAs photocathode to produce highly polarized electrons or a Compton polarimeter to continuously monitor the electron beam polarization.Comment: 8 pages, 4 figures, Tex, elsart.cls; revised version as accepted for Phys. Lett.

    Measurement of the Generalized Forward Spin Polarizabilities of the Neutron

    Full text link
    The generalized forward spin polarizabilities γ0\gamma_0 and δLT\delta_{LT} of the neutron have been extracted for the first time in a Q2Q^2 range from 0.1 to 0.9 GeV2^2. Since γ0\gamma_0 is sensitive to nucleon resonances and δLT\delta_{LT} is insensitive to the Δ\Delta resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on δLT\delta_{LT} show significant disagreement with Chiral Perturbation Theory calculations, while the data for γ0\gamma_0 at low Q2Q^2 are in good agreement with a next-to-lead order Relativistic Baryon Chiral Perturbation theory calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR

    The Q^2 evolution of the generalized Gerasimov-Drell-Hearn integral for the neutron using a He-3 target

    Full text link
    We present data on the inclusive scattering of polarized electrons from a polarized He-3 target at energies from 0.862 to 5.06 GeV, obtained at a scattering angle of 15.5 degrees. Our data include measurements from the quasielastic peak, through the resonance region, to the beginning of the deep inelastic regime, and were used to determine the spin difference in the virtual photoabsorption cross section. We extract the extended Gerasimov-Drell-Hearn integral for the neutron in the range of 4-momentum transfer squared Q^2 of 0.1-0.9 GeV.Comment: 14 pages of text when TeXed in preprint format with figures embedded. RevTeX format. Three eps figure

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2

    Get PDF
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.Comment: 12 pages, 4 figures, 2 table

    Exclusive ρ0 Meson Electroproduction from Hydrogen at CLAS

    Get PDF
    The longitudinal and transverse components of the cross section for the ep → e′ pρ0 reaction were measured in Hall B at Jefferson Laboratory using the CLAS detector. The data were taken with a 4.247 GeV electron beam and were analyzed in a range of xB from 0.2 to 0.6 and of Q2 from 1.5 to 3.0 GeV2. The data are compared to a Regge model based on effective hadronic degrees of freedom and to a calculation based on Generalized Parton Distributions. It is found that, at our lowest xB values, the transverse part of the cross section is well described by the former approach while the longitudinal part can be reproduced by the latter

    Q^2 Evolution of the Neutron Spin Structure Moments using a He-3 Target

    Full text link
    We have measured the spin structure functions g1g_1 and g2g_2 of 3^3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.07 GeV off a polarized 3^3He target at a 15.5^{\circ} scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2Q^2 evolution of Γ1(Q2)=01g1(x,Q2)dx\Gamma_1(Q^2)=\int_0^{1} g_1(x,Q^2) dx, Γ2(Q2)=01g2(x,Q2)dx\Gamma_2(Q^2)=\int_0^1 g_2(x,Q^2) dx and d2(Q2)=01x2[2g1(x,Q2)+3g2(x,Q2)]dxd_2 (Q^2) = \int_0^1 x^2[ 2g_1(x,Q^2) + 3g_2(x,Q^2)] dx for the neutron in the range 0.1 GeV2^2 Q2\leq Q^2 \leq 0.9 GeV2^2 with good precision. Γ1(Q2) \Gamma_1(Q^2) displays a smooth variation from high to low Q2Q^2. The Burkhardt-Cottingham sum rule holds within uncertainties and d2d_2 is non-zero over the measured range.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Lett.. Updated Hermes data in Fig. 2 (top panel) and their corresponding reference. Updated the low x extrapolation error Fig. 2 (middle panel). Corrected references to ChiPT calculation

    Beam-Target Double-Spin Asymmetry in Quasielastic Electron Scattering off the Deuteron with CLAS

    Get PDF
    Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6-1.7, 2.5, 4.2, and 5.6-5.8 GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2 (0.13-3.17 (GeV/c)2), missing momentum (pm = 0.0-0.5 GeV/c), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θnq). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (pm \u3c= 0.25 GeV/c), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Conclusions: Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (PbPt) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. However, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for
    corecore