15 research outputs found

    Testing mAs Reciprocity Law using a screen-film system and an exposure meter on a diagnostic xray machine

    Get PDF
    Reciprocity law states that the relationship between exposure and optical density (OD) should remain constant regardless of the exposure rate. In this experiment two different detectors were used to prove the reciprocity law using an exposure meter detector and a screen-film system. Four different valuesof kVps were used in this experiment which were 40 kVp, 50 kVp, 60 kVp, and 70 kVp. Different values of mAs were used from 1 mAs up to 50 mAs. Other factors used in this experiment were maintained constant such as the distance from focal spot to detector 100 cm and collimator opening 15 cm x 10 cm to make sure all contributions from the surroundings were approximately the same. In this experiment, acceptability range of the reciprocity law used for the screen-film OD was ±5% and acceptability range of the absorbed dose using the exposure meter was ±10%. From the result, it shows that at low kilovoltage which was 40 kV the OD and absorbed dose values disobeyed the reciprocity law, but at high kilovoltage, the OD and linearity value obeyed the reciprocity law

    Characterization of the rhizophora particleboard as a tissue-equivalent phantom material bonded with bio–based adhesive

    Get PDF
    In this study, some characteristics of Rhizophora spp. particleboards bonded with Serishoom (traditional animal–based adhesive) as a phantom material was investigated. The Rhizophora spp. particleboards were fabricated in two Serishoom adhesive treatment levels (6% and 12%) with three Rhizophora spp. particle sizes (≤ 149 µm, 149 µm – 500 µm, and 500 µm – 1000 µm) at 1 g.cm-3 of the target density. The internal bond strength and the dimensional stability of the Serishoom-bonded Rhizophora spp. particleboards were improved by using the smaller Rhizophora spp. particle size and the higher Serishoom adhesive treatment level. The effective atomic numbers of the Serishoom-bonded Rhizophora spp. particleboards were determineted to be 7,56 to 7,58 by an energy dispersive X-ray, which is in good agreement with those of water and breast tissue. In addition, the density distribution profiles of the fabricated Serishoom-bonded Rhizophora spp. particleboards were determined by the Kriging method with the use Surfer8 computer software, which indicated that there was good density homogeneity throughout the Serishoom-bonded Rhizophora spp. particleboards. The results showed a potential of the Serishoom-bonded Rhizophora spp. particleboard bonded with Serishoom to be used as a phantom material

    Hydrophilic copolymer material characterisation in the mammographic energy region by transmission tomography.

    No full text
    Mammographic techniques used for screening programmes need to be of the highest quality; hence, the need of a good phantom to mimic breast response to radiation. The phantom materials must be sensitive to small changes in the mammography system and provide a means of evaluating the absorbed dose to the breast. These materials have to provide the same attenuation properties as the real tissues being simulated, for the radiation modalities being investigated. Cross-linked hydrophilic copolymers have the potential to be good phantom materials for the breast as their elemental compositions are similar to soft tissue. Two types of hydrophilic copolymer materials used in this study were designated as ED1S and ED4C. They were made from a certain proportionate mixture of methyl methacrylate and vinyl pyrrolidone. The physical properties of the materials such as liquid uptake and dimensional changes in hydration and dehydration processes were studied. The equilibrium water content of ED1S and ED4C fully hydrated in water was 55% and 70% respectively. The samples underwent distortion when dehydrated and a volume approximation formula for the dehydrated samples was derived. The linear attenuation coefficient and the mass attenuation coefficient of the hydrophilic copolymer materials at photon energies in the mammographic energy region were determined. Both a single beam transmission method and a photon transmission tomography method were used. The results were compared with XCOM calculated attenuation coefficients of water and average breasts using the elemental composition found in the literature. It was found that the mass attenuation coefficient of dry hydrophilic copolymer samples closely fit the XCOM calculated old-age breast (Breast 3) and samples fully hydrated in water fit the calculated young-age breast (Breast 1). Measurements were also carried out to determine the linear attenuation coefficient of normal and abnormal breast tissues at four photon energies in the mammographic energy region. The values found were in good accord with calculated average breast values. However, more studies need to be done as only three samples were used. The electron density of the hydrophilic copolymer materials was determined by using the Compton scattering technique. The electron density for dry ED1S sample was (3.1 +/- 0.4) x 1023 electrons per cm3 and for dry ED4C was (4.4 +/- 0.4) x 1023 electrons per cm3

    Hydrophilic copolymer material characterisation in the mammographic energy region by transmission tomography.

    No full text
    Mammographic techniques used for screening programmes need to be of the highest quality; hence, the need of a good phantom to mimic breast response to radiation. The phantom materials must be sensitive to small changes in the mammography system and provide a means of evaluating the absorbed dose to the breast. These materials have to provide the same attenuation properties as the real tissues being simulated, for the radiation modalities being investigated. Cross-linked hydrophilic copolymers have the potential to be good phantom materials for the breast as their elemental compositions are similar to soft tissue. Two types of hydrophilic copolymer materials used in this study were designated as ED1S and ED4C. They were made from a certain proportionate mixture of methyl methacrylate and vinyl pyrrolidone. The physical properties of the materials such as liquid uptake and dimensional changes in hydration and dehydration processes were studied. The equilibrium water content of ED1S and ED4C fully hydrated in water was 55% and 70% respectively. The samples underwent distortion when dehydrated and a volume approximation formula for the dehydrated samples was derived. The linear attenuation coefficient and the mass attenuation coefficient of the hydrophilic copolymer materials at photon energies in the mammographic energy region were determined. Both a single beam transmission method and a photon transmission tomography method were used. The results were compared with XCOM calculated attenuation coefficients of water and average breasts using the elemental composition found in the literature. It was found that the mass attenuation coefficient of dry hydrophilic copolymer samples closely fit the XCOM calculated old-age breast (Breast 3) and samples fully hydrated in water fit the calculated young-age breast (Breast 1). Measurements were also carried out to determine the linear attenuation coefficient of normal and abnormal breast tissues at four photon energies in the mammographic energy region. The values found were in good accord with calculated average breast values. However, more studies need to be done as only three samples were used. The electron density of the hydrophilic copolymer materials was determined by using the Compton scattering technique. The electron density for dry ED1S sample was (3.1 +/- 0.4) x 1023 electrons per cm3 and for dry ED4C was (4.4 +/- 0.4) x 1023 electrons per cm3

    Measuring radon concentration and toxic elements in the irrigation water of the agricultural areas in Cameron Highlands, Malaysia

    Get PDF
    Radon and toxic elements (Pb, Cd, Co, Cu, Cr, Zn and Ni) were measured in different water samples in Cameron Highlands, Pahang. RAD7 and rad H20 were used to estimate the radon concentration. The average values for radon concentration were found to vary from a minimum of 0.21 Bq/L to a maximum of 0.297 Bq/L. Heavy metals concentration were measured using an atomic absorption spectrometer. The mean concentrations of Pb, Cd, Co, Ni, Cu, Zn and Cr were 0.07, 0.009, 0.009, 0.043, 0.076, 0.079 mg/L and ND, respectively. Comparing the results with the literature, shows that the concentrations obtained were within the allowed limits of the agricultural and domestic use

    Potential application of pure silica optical flat fibers for radiation therapy dosimetry

    No full text
    Pure silica optical flat fibers (FF) have been proposed as the basis for a novel radiation sensor by the measurement of the thermoluminescence (TL) produced. In this paper the TL performance of the FFs were studied. Using a linear accelerator (LINAC) delivering doses in the range 0.2–10.0 Gy, the TL dosimetric glow curves of the FFs were studied with respect to 6 MeV electron and 6 MV photon beams. When exposed to 6 MeV electron irradiation, the pure silica FFs displayed a supralinear response starting from 2 Gy up to 10.0 Gy. While for 6 MV photon irradiation, the FFs shows linear characteristic (f(D)=1) nearly up to 2 Gy. The TL intensity (Im) of the main peak of FFs is 1.5 times higher for 6 MeV electron beams than for 6 MV photon beams. The maximum peak temperature (Tm) it is not affected by the type of irradiation used at the same dose while the maximum TL intensity (Im) was found to be dependent on the type of radiation used. Overall results indicate that the pure silica FFs can be used as radiation sensors in the high-dose therapy dosimetry
    corecore