5 research outputs found

    Green synthesis of lead oxide nanoparticles for photo-electrocatalytic and antimicrobial applications

    Get PDF
    Synthesis of nanoparticles (NPs) for many different uses requires the development of environmentally friendly synthesis protocols. In this article, we present a simple and environmentally friendly method to synthesize lead oxide (PbO) NPs from the plant material of the Mangifera indica. Analytical techniques such as spectroscopy, X-ray diffraction, and microscopy were used to characterize the synthesized PbO NPs, and their photo-electrocatalytic and antifungal properties were also evaluated. H2O2 was used to investigate the efficacy of removing methylene blue dye. At a range of pH values, H2O2 was used to study the role of hydroxyl radicals in the breakdown of methylene blue dye. Methylene blue dyes are more easily eliminated due to increased generation of the *OH radical during removal. Dye degradation was also significantly affected by the aqueous medium’s pH. Additionally, the electrocatalytic properties of the PbO NPs adapted electrode were studied in CH3COONa aqueous solution using cyclic voltammetry. Excellent electrocatalytic properties of the PbO NPs are shown by the unity of the anodic and cathodic peaks of the modified electrode in comparison to the stranded electrode. Aspergillus flavus, Aspergillus niger, and Candida glabrata were some fungi tested with the PbO NPs. Against A. flavus (40%) and A. niger (50%), and C. glabrata (75%), the PbO NPs display an excellent inhibition zone. Finally, PbO NPs were used in antioxidant studies with the powerful antioxidant 2, 2 diphenyl-1-picrylhydrazyl (DPPH). This study presents a simple and environmentally friendly method for synthesizing PbO NPs with multiple uses, including photo-electrocatalytic and antimicrobial activity

    Genetic Analysis of Inhibin Alpha (INHα) Mutation (769G>A) in Patients with Premature Ovarian Failure in a Local Population

    No full text
    Background and Objective:&nbsp;&nbsp;Premature ovarian failure is a worldwide concern effecting 1% of females of reproductive age. The objective of the present study was to analyze the role of inhibin alpha (INH&alpha;) gene mutation (769G&gt;A) in patients with premature ovarian failure (POF) in the local population. Methods:&nbsp;&nbsp;This case-control association studywas conducted in Department of Gynecology, Jinnah Hospital and The Children&rsquo;s Hospital and Institute of Child Health&nbsp; from July 2015-July 2016. A total of n = 100&nbsp; were recruited for this study and divided into two gropus females with equal number (n = 50)of patients andnormal controls of reproductive age (14 &ndash; 40 years). The screening of theINH&alpha; for 769G&gt;A variation in exon 2 was done through DNA sequencing. Results:&nbsp;&nbsp;A higher frequency of the major allele G was seen in both the patients (99%) and the controls (87%) while comparing to minor allele A (1% in patients and 13% in controls). None of the patients was found to be homozygous (AA = 0%) for allele A, whereas, four of the controls were homozygous (AA = 8%). The frequency of the minor A allele in controls was found to be statistically significant (P-value = 0.002). Conclusion:&nbsp;&nbsp;An association of decreased risk of POFwith A allele of the 769G&gt;A variant rather than increasing the risk of development of ovarian failure.</p

    Study of variants associated with ventricular septal defects (VSDs) highlights the unique genetic structure of the Pakistani population

    No full text
    Abstract Background Ventricular septal defects (VSDs) are one of the leading causes of death due to cardiac anomalies during the first months of life. The prevalence of VSD in neonates is reported up to 4%. Despite the remarkable progress in medication, treatment and surgical procedure for VSDs, the genetic etiology of VSDs is still in infancy because of the complex genetic and environmental interactions. Methods Three hundred fifty subjects (200 VSD children and 150 healthy controls) were recruited from different pediatric cardiac units. Pediatric clinical and demographic data were collected. A total of six variants, rs1017 (ISL1), rs7240256 (NFATc1), rs36208048 (VEGF), variant of HEY2, rs11067075 (TBX5) and rs1801133 (MTHFR) genes were genotyped by tetra-ARMS PCR and PCR–RFLP methods. Results The results showed that in cases, the rs1017 (g.16138A > T) variant in the ISL1 gene has an allele frequency of 0.42 and 0.58 respectively for the T and A alleles, and 0.75 and 0.25 respectively in the controls. The frequencies of the AA, TA and TT genotypes were, 52%, 11% and 37% in cases versus 21%, 8% and 71% respectively in the controls. For the NFATc1 variant rs7240256, minor allele frequency (MAF) was 0.43 in cases while 0.23 in controls. For the variant in the VEGF gene, genotype frequencies were 0% (A), 32% (CA) and 68% (CC) in cases and 0.0%, 33% and 67% respectively in controls. The allele frequency of C and A were 0.84 and 0.16 in cases and 0.83 and 0.17 respectively in controls. The TBX5 polymorphism rs11067075 (g.51682G > T) had an allelic frequency of 0.44 and 0.56 respectively for T and G alleles in cases, versus 0.26 and 0.74 in the controls. We did not detect the presence of the HEY2 gene variant (g.126117350A > C) in our pediatric cohort. For the rs1801133 (g.14783C > T) variant in the MTHFR gene, the genotype frequencies were 25% (CC), 62% (CT) and 13% (TT) in cases, versus 88%, 10% and 2% in controls. The ISL1, NFATc1, TBX5 and MTHFR variants were found to be in association with VSD in the Pakistani pediatric cohort whilst the VEGF and HEY2 variants were completely absent in our cohort. Conclusion We propose that a wider programme of genetic screening of the Pakistani population for genetic markers in heart development genes would be helpful in reducing the risk of VSDs

    Assessment of flatulence causing agents in Chickpea (Cicer arietinum L.) and their possible removal

    No full text
    Abstract Flatulence and fullness of stomach is one of the most common problem associated with chickpea primary due to presence of some oligosaccharides and phenols. In this investigation Desi and Kabuli varieties were compared for these oligosaccharides and phenolic compounds. Furthermore, the effect of different processing and cooking methods such as soaking, cooking and germination in the reduction of these antiphysiological factors were are also studies. Maximum tannic acid (0.90 ± 0.20%) was observed in Parbat and C-44 while minimum (0.60 ± 0.04%) in Karak-2. Stachyose contents ranged between 1.10 ± 0.05 (Karak-3) to 1.42 ± 0.02% (Parbat) while raffinose was 0.63 ± 0.05(Karak-3) to 0.81 ± 0.02% (Dasht). The highest tannic acid content was reduced up to 50% in C-44 by cooking of 72 hours germinated seeds. Stachyose and raffinose contents were completely removed after 72 hours germination. Present studies revealed that cooking after germination is the most effective method to reduce the anti-nutritional factors of chickpea. Individually, soaking and cooking also contributed to the loss of the same factors but to a lesser extent

    DataSheet1_Green synthesis of lead oxide nanoparticles for photo-electrocatalytic and antimicrobial applications.docx

    No full text
    Synthesis of nanoparticles (NPs) for many different uses requires the development of environmentally friendly synthesis protocols. In this article, we present a simple and environmentally friendly method to synthesize lead oxide (PbO) NPs from the plant material of the Mangifera indica. Analytical techniques such as spectroscopy, X-ray diffraction, and microscopy were used to characterize the synthesized PbO NPs, and their photo-electrocatalytic and antifungal properties were also evaluated. H2O2 was used to investigate the efficacy of removing methylene blue dye. At a range of pH values, H2O2 was used to study the role of hydroxyl radicals in the breakdown of methylene blue dye. Methylene blue dyes are more easily eliminated due to increased generation of the *OH radical during removal. Dye degradation was also significantly affected by the aqueous medium’s pH. Additionally, the electrocatalytic properties of the PbO NPs adapted electrode were studied in CH3COONa aqueous solution using cyclic voltammetry. Excellent electrocatalytic properties of the PbO NPs are shown by the unity of the anodic and cathodic peaks of the modified electrode in comparison to the stranded electrode. Aspergillus flavus, Aspergillus niger, and Candida glabrata were some fungi tested with the PbO NPs. Against A. flavus (40%) and A. niger (50%), and C. glabrata (75%), the PbO NPs display an excellent inhibition zone. Finally, PbO NPs were used in antioxidant studies with the powerful antioxidant 2, 2 diphenyl-1-picrylhydrazyl (DPPH). This study presents a simple and environmentally friendly method for synthesizing PbO NPs with multiple uses, including photo-electrocatalytic and antimicrobial activity.</p
    corecore