2,196 research outputs found
Testing the Reality of Strong Magnetic Fields on T Tauri Stars: The Naked T Tauri Star Hubble 4
High resolution optical and infrared (IR) echelle spectra of the naked
(diskless) T Tauri star Hubble 4 are presented. The K band IR spectra include 4
Zeeman sensitive Ti I lines along with several magnetically insensitive CO
lines. Detailed spectrum synthesis combined with modern atmospheric models is
used to fit the optical spectra of Hubble 4 in order to determine its key
stellar parameters: Teff = 4158 +/- 56 K; log(g) = 3.61 +/- 0.50; [M/H] = -0.08
+/- 0.05; vsini = 14.6 +/- 1.7 km/s . These stellar parameters are used to
synthesize K band spectra to compare with the observations. The magnetically
sensitive Ti I lines are all significantly broadened relative to the lines
produced in the non-magnetic model, while the magnetically insensitive CO lines
are well matched by the basic non-magnetic model. Models with magnetic fields
are synthesized and fit to the Ti I lines. The best fit models indicate a
distribution of magnetic field strengths on the stellar surface characterized
by a mean magnetic field strength of 2.51 +/- 0.18 kG. The mean field is a
factor of 2.0 greater than the maximum field strength predicted by pressure
equipartition arguments. To confirm the reality of such strong fields, we
attempt to refit the observed profiles using a two component magnetic model in
which the field strength is confined to the equipartition value representing
plage-like regions in one component, and the field is allowed to vary in a
cooler component representing spots. It is shown that such a model is
inconsistent with the optical spectrum of the TiO bandhead at 7055 Angstroms.Comment: 31 pages, including 5 figures accepted for publication in The
Astrophysical Journa
Alignment of galaxies relative to their local environment in SDSS-DR8
We study the alignment of galaxies relative to their local environment in
SDSS-DR8 and, using these data, we discuss evolution scenarios for different
types of galaxies. We defined a vector field of the direction of anisotropy of
the local environment of galaxies. We summed the unit direction vectors of all
close neighbours of a given galaxy in a particular way to estimate this field.
We found the alignment angles between the spin axes of disc galaxies, or the
minor axes of elliptical galaxies, and the direction of anisotropy. The
distributions of cosines of these angles are compared to the random
distributions to analyse the alignment of galaxies. Sab galaxies show
perpendicular alignment relative to the direction of anisotropy in a sparse
environment, for single galaxies and galaxies of low luminosity. Most of the
parallel alignment of Scd galaxies comes from dense regions, from 2...3 member
groups and from galaxies with low luminosity. The perpendicular alignment of S0
galaxies does not depend strongly on environmental density nor luminosity; it
is detected for single and 2...3 member group galaxies, and for main galaxies
of 4...10 member groups. The perpendicular alignment of elliptical galaxies is
clearly detected for single galaxies and for members of < 11 member groups; the
alignment increases with environmental density and luminosity. We confirm the
existence of fossil tidally induced alignment of Sab galaxies at low z. The
alignment of Scd galaxies can be explained via the infall of matter to
filaments. S0 galaxies may have encountered relatively massive mergers along
the direction of anisotropy. Major mergers along this direction can explain the
alignment of elliptical galaxies. Less massive, but repeated mergers are
possibly responsible for the formation of elliptical galaxies in sparser areas
and for less luminous elliptical galaxies.Comment: 15 pages, 15 figures, accepted for publication in A&
Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity
Aims: Stellar activity may complicate the analysis of high-precision
radial-velocity spectroscopic data when looking for exoplanets signatures. We
aim at quantifying the impact of stellar spots on stars with various spectral
types and rotational velocities and comparing the simulations with data
obtained with the HARPS spectrograph. Methods: We have developed detailed
simulations of stellar spots and estimated their effects on a number of
observables commonly used in the analysis of radial-velocity data when looking
for extrasolar planets, such as radial-velocity curves, cross-correlation
functions, bisector spans and photometric curves. The computed stellar spectra
are then analyzed in the same way as when searching for exoplanets. Results: 1)
A first grid of simulation results is built for F-K type stars, with different
stellar and spot properties. 2) It is shown quantitatively that star spots with
typical sizes of 1% can mimic both radial-velocity curves and the bisector
behavior of short-period giant planets around G-K type stars with a vsini lower
than the spectrograph resolution. For stars with intermediate vsini, smaller
spots may produce similar features. In these cases, additional observables
(e.g., photometry, spectroscopic diagnostics) are mandatory to confirm the
presence of short-period planets. We show that, in some cases, photometric
variations may not be enough to clearly rule out spots as explanations of the
observed radial-velocity variations. This is particularly important when
searching for super-Earth planets. 3) It is also stressed that quantitative
values obtained for radial-velocity and bisector span amplitudes depend
strongly on the detailed star properties, on the spectrograph used, on the set
of lines used, and on the way they are measured.Comment: 12 pages, 16 figures, accepted for publication in A&
Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation
We provide flux-limited and volume-limited galaxy group and cluster
catalogues, based on the spectroscopic sample of the SDSS data release 10
galaxies. We used a modified friends-of-friends (FoF) method with a variable
linking length in the transverse and radial directions to identify as many
realistic groups as possible. The flux-limited catalogue incorporates galaxies
down to m_r = 17.77 mag. It includes 588193 galaxies and 82458 groups. The
volume-limited catalogues are complete for absolute magnitudes down to M_r =
-18.0, -18.5, -19.0, -19.5, -20.0, -20.5, and -21.0; the completeness is
achieved within different spatial volumes, respectively. Our analysis shows
that flux-limited and volume-limited group samples are well compatible to each
other, especially for the larger groups/clusters. Dynamical mass estimates,
based on radial velocity dispersions and group extent in the sky, are added to
the extracted groups. The catalogues can be accessed via http://cosmodb.to.ee
and the Strasbourg Astronomical Data Center (CDS).Comment: 16 pages, 18 figures, 2 tables, accepted for publication in A&
Searching for Planets in the Hyades II: Some Implications of Stellar Magnetic Activity
The Hyades constitute a homogeneous sample of stars ideal for investigating
the dependence of planet formation on the mass of the central star. Due to
their youth, Hyades members are much more chromospherically active than stars
traditionally surveyed for planets using high precision radial velocity (RV)
techniques. Therefore, we have conducted a detailed investigation of whether
magnetic activity of our Hyades target stars will interfere with our ability to
make precise RV searches for substellar companions. We measure chromospheric
activity (which we take as a proxy for magnetic activity) by computing the
equivalent of the R'HK activity index from the Ca II K line. is not
constant in the Hyades: we confirm that it decreases with increasing
temperature in the F stars, and also find it decreases for stars cooler than
mid-K. We examine correlations between simultaneously measured R'HK and RV
using both a classical statistical test and a Bayesian odds ratio test. We find
that there is a significant correlation between R'HK and the RV in only 5 of
the 82 stars in this sample. Thus, simple Rprime HK-RV correlations will
generally not be effective in correcting the measured RV values for the effects
of magnetic activity in the Hyades. We argue that this implies long timescale
activity variations (of order a few years; i.e., magnetic cycles or growth and
decay of plage regions) will not significantly hinder our search for planets in
the Hyades if the stars are closely monitored for chromospheric activity. The
trends in the RV scatter (sigma'_v) with , vsini, and P_rot for our stars
is generally consistent with those found in field stars in the Lick planet
search data, with the notable exception of a shallower dependence of sigma'_v
on for F stars.Comment: 15 pages, 7 figures, 3 tables; To appear in the July 2002 issue of
The Astronomical Journa
Discovery of a massive supercluster system at
Superclusters are the largest relatively isolated systems in the cosmic web.
Using the SDSS BOSS survey we search for the largest superclusters in the
redshift range .
We generate a luminosity-density field smoothed over
to detect the large-scale over-density regions. Each individual over-density
region is defined as single supercluster in the survey. We define the
superclusters in the way that they are comparable with the superclusters found
in the SDSS main survey.
We found a system we call the BOSS Great Wall (BGW), which consists of two
walls with diameters 186 and 173 Mpc, and two other major superclusters
with diameters of 64 and 91 Mpc. As a whole, this system consists of
830 galaxies with the mean redshift 0.47. We estimate the total mass to be
approximately . The morphology of the
superclusters in the BGW system is similar to the morphology of the
superclusters in the Sloan Great Wall region.
The BGW is one of the most extended and massive system of superclusters yet
found in the Universe.Comment: 4 pages, accepted as a letter in A&
Estimating Flow Rates through Fracture Networks using Combinatorial Optimization
To enable fast uncertainty quantification of fluid flow in a discrete
fracture network (DFN), we present two approaches to quickly compute fluid flow
in DFNs using combinatorial optimization algorithms. Specifically, the
presented Hanan Shortest Path Maxflow (HSPM) and Intersection Shortest Path
Maxflow (ISPM) methods translate DFN geometries and properties to a graph on
which a max flow algorithm computes a combinatorial flow, from which an overall
fluid flow rate is estimated using a shortest path decomposition of this flow.
The two approaches are assessed by comparing their predictions with results
from explicit numerical simulations of simple test cases as well as stochastic
DFN realizations covering a range of fracture densities. Both methods have a
high accuracy and very low computational cost, which can facilitate much-needed
in-depth analyses of the propagation of uncertainty in fracture and
fracture-network properties to fluid flow rates
An integrative approach based on probabilistic modelling and statistical inference for morpho-statistical characterization of astronomical data
This paper describes several applications in astronomy and cosmology that are
addressed using probabilistic modelling and statistical inference
- …
