2,196 research outputs found

    Testing the Reality of Strong Magnetic Fields on T Tauri Stars: The Naked T Tauri Star Hubble 4

    Full text link
    High resolution optical and infrared (IR) echelle spectra of the naked (diskless) T Tauri star Hubble 4 are presented. The K band IR spectra include 4 Zeeman sensitive Ti I lines along with several magnetically insensitive CO lines. Detailed spectrum synthesis combined with modern atmospheric models is used to fit the optical spectra of Hubble 4 in order to determine its key stellar parameters: Teff = 4158 +/- 56 K; log(g) = 3.61 +/- 0.50; [M/H] = -0.08 +/- 0.05; vsini = 14.6 +/- 1.7 km/s . These stellar parameters are used to synthesize K band spectra to compare with the observations. The magnetically sensitive Ti I lines are all significantly broadened relative to the lines produced in the non-magnetic model, while the magnetically insensitive CO lines are well matched by the basic non-magnetic model. Models with magnetic fields are synthesized and fit to the Ti I lines. The best fit models indicate a distribution of magnetic field strengths on the stellar surface characterized by a mean magnetic field strength of 2.51 +/- 0.18 kG. The mean field is a factor of 2.0 greater than the maximum field strength predicted by pressure equipartition arguments. To confirm the reality of such strong fields, we attempt to refit the observed profiles using a two component magnetic model in which the field strength is confined to the equipartition value representing plage-like regions in one component, and the field is allowed to vary in a cooler component representing spots. It is shown that such a model is inconsistent with the optical spectrum of the TiO bandhead at 7055 Angstroms.Comment: 31 pages, including 5 figures accepted for publication in The Astrophysical Journa

    Alignment of galaxies relative to their local environment in SDSS-DR8

    Full text link
    We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of < 11 member groups; the alignment increases with environmental density and luminosity. We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.Comment: 15 pages, 15 figures, accepted for publication in A&

    Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity

    Full text link
    Aims: Stellar activity may complicate the analysis of high-precision radial-velocity spectroscopic data when looking for exoplanets signatures. We aim at quantifying the impact of stellar spots on stars with various spectral types and rotational velocities and comparing the simulations with data obtained with the HARPS spectrograph. Methods: We have developed detailed simulations of stellar spots and estimated their effects on a number of observables commonly used in the analysis of radial-velocity data when looking for extrasolar planets, such as radial-velocity curves, cross-correlation functions, bisector spans and photometric curves. The computed stellar spectra are then analyzed in the same way as when searching for exoplanets. Results: 1) A first grid of simulation results is built for F-K type stars, with different stellar and spot properties. 2) It is shown quantitatively that star spots with typical sizes of 1% can mimic both radial-velocity curves and the bisector behavior of short-period giant planets around G-K type stars with a vsini lower than the spectrograph resolution. For stars with intermediate vsini, smaller spots may produce similar features. In these cases, additional observables (e.g., photometry, spectroscopic diagnostics) are mandatory to confirm the presence of short-period planets. We show that, in some cases, photometric variations may not be enough to clearly rule out spots as explanations of the observed radial-velocity variations. This is particularly important when searching for super-Earth planets. 3) It is also stressed that quantitative values obtained for radial-velocity and bisector span amplitudes depend strongly on the detailed star properties, on the spectrograph used, on the set of lines used, and on the way they are measured.Comment: 12 pages, 16 figures, accepted for publication in A&

    Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation

    Full text link
    We provide flux-limited and volume-limited galaxy group and cluster catalogues, based on the spectroscopic sample of the SDSS data release 10 galaxies. We used a modified friends-of-friends (FoF) method with a variable linking length in the transverse and radial directions to identify as many realistic groups as possible. The flux-limited catalogue incorporates galaxies down to m_r = 17.77 mag. It includes 588193 galaxies and 82458 groups. The volume-limited catalogues are complete for absolute magnitudes down to M_r = -18.0, -18.5, -19.0, -19.5, -20.0, -20.5, and -21.0; the completeness is achieved within different spatial volumes, respectively. Our analysis shows that flux-limited and volume-limited group samples are well compatible to each other, especially for the larger groups/clusters. Dynamical mass estimates, based on radial velocity dispersions and group extent in the sky, are added to the extracted groups. The catalogues can be accessed via http://cosmodb.to.ee and the Strasbourg Astronomical Data Center (CDS).Comment: 16 pages, 18 figures, 2 tables, accepted for publication in A&

    Searching for Planets in the Hyades II: Some Implications of Stellar Magnetic Activity

    Full text link
    The Hyades constitute a homogeneous sample of stars ideal for investigating the dependence of planet formation on the mass of the central star. Due to their youth, Hyades members are much more chromospherically active than stars traditionally surveyed for planets using high precision radial velocity (RV) techniques. Therefore, we have conducted a detailed investigation of whether magnetic activity of our Hyades target stars will interfere with our ability to make precise RV searches for substellar companions. We measure chromospheric activity (which we take as a proxy for magnetic activity) by computing the equivalent of the R'HK activity index from the Ca II K line. is not constant in the Hyades: we confirm that it decreases with increasing temperature in the F stars, and also find it decreases for stars cooler than mid-K. We examine correlations between simultaneously measured R'HK and RV using both a classical statistical test and a Bayesian odds ratio test. We find that there is a significant correlation between R'HK and the RV in only 5 of the 82 stars in this sample. Thus, simple Rprime HK-RV correlations will generally not be effective in correcting the measured RV values for the effects of magnetic activity in the Hyades. We argue that this implies long timescale activity variations (of order a few years; i.e., magnetic cycles or growth and decay of plage regions) will not significantly hinder our search for planets in the Hyades if the stars are closely monitored for chromospheric activity. The trends in the RV scatter (sigma'_v) with , vsini, and P_rot for our stars is generally consistent with those found in field stars in the Lick planet search data, with the notable exception of a shallower dependence of sigma'_v on for F stars.Comment: 15 pages, 7 figures, 3 tables; To appear in the July 2002 issue of The Astronomical Journa

    Discovery of a massive supercluster system at z0.47z \sim 0.47

    Full text link
    Superclusters are the largest relatively isolated systems in the cosmic web. Using the SDSS BOSS survey we search for the largest superclusters in the redshift range 0.43<z<0.710.43<z<0.71. We generate a luminosity-density field smoothed over 8h1Mpc8 h^{-1}\mathrm{Mpc} to detect the large-scale over-density regions. Each individual over-density region is defined as single supercluster in the survey. We define the superclusters in the way that they are comparable with the superclusters found in the SDSS main survey. We found a system we call the BOSS Great Wall (BGW), which consists of two walls with diameters 186 and 173 h1h^{-1}Mpc, and two other major superclusters with diameters of 64 and 91 h1h^{-1}Mpc. As a whole, this system consists of 830 galaxies with the mean redshift 0.47. We estimate the total mass to be approximately 2×1017h1M2\times10^{17}h^{-1}M_\odot. The morphology of the superclusters in the BGW system is similar to the morphology of the superclusters in the Sloan Great Wall region. The BGW is one of the most extended and massive system of superclusters yet found in the Universe.Comment: 4 pages, accepted as a letter in A&

    Estimating Flow Rates through Fracture Networks using Combinatorial Optimization

    Full text link
    To enable fast uncertainty quantification of fluid flow in a discrete fracture network (DFN), we present two approaches to quickly compute fluid flow in DFNs using combinatorial optimization algorithms. Specifically, the presented Hanan Shortest Path Maxflow (HSPM) and Intersection Shortest Path Maxflow (ISPM) methods translate DFN geometries and properties to a graph on which a max flow algorithm computes a combinatorial flow, from which an overall fluid flow rate is estimated using a shortest path decomposition of this flow. The two approaches are assessed by comparing their predictions with results from explicit numerical simulations of simple test cases as well as stochastic DFN realizations covering a range of fracture densities. Both methods have a high accuracy and very low computational cost, which can facilitate much-needed in-depth analyses of the propagation of uncertainty in fracture and fracture-network properties to fluid flow rates
    corecore