185 research outputs found
A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor.
UNLABELLED: Breathalyzers estimate Blood Alcohol Content (BAC) from the concentration of ethanol in the breath. Breathalyzers are easy to use but are limited either by their high price and by environmental concerns, or by a short lifetime and the need for continuous recalibration. Here, we demonstrate a proof-of-concept disposable breathalyzer using an organic electrochemical transistor (OECT) modified with alcohol dehydrogenase (ADH) as the sensor. The OECT is made with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS), and is printed on paper. ADH and its cofactor nicotinamide adenine dinucleotide (NAD(+)) are immobilized onto the OECT with an electrolyte gel. When the OECT-breathalyzer is exposed to ethanol vapor, the enzymatic reaction of ADH and ethanol transforms NAD(+) into NADH, which causes a decrease in the OECT source drain current. In this fashion, the OECT-breathalyzer easily detects ethanol in the breath equivalent to BAC from 0.01% to 0.2%. The use of a printed OECT may contribute to the development of breathalyzers that are disposable, ecofriendly, and integrated with wearable devices for real-time BAC monitoring
USING GIS AND PHOTOGRAMMETRY FOR ASSESSING SOLAR PHOTOVOLTAIC POTENTIAL ON FLAT ROOFS IN URBAN AREA CASE OF THE CITY OF BEN GUERIR / MOROCCO
Renewable energy sources are at the forefront of political discussions around the world because of the scarcity of fossil fuels and climate change caused by the accumulation of greenhouse gases. By 2030, Morocco will cover 52% of these energy needs through renewable energies, in order to preserve the environment (COP 22). This paper aims to estimate the potential of photovoltaic solar energy from flat roofs in the city of Ben Guerir, Morocco using remote sensing and GIS data. To achieve this goal, vector orthophoto resulting from the photogrammetric restitution acquired in 2015 were used to generate a 3D model (DSM). The annual solar irradiation is calculated by the analyser of the solar tool. Each roof is calculated based on algorithms for the most common solar panel technologies (mono-si and poly-si). The applicability of this methodology has been demonstrated in the urban area of Benguerir, Morocco, and can be widespread in any other region of the world. The results obtained for a total roofing surface of 135 Ha, i.e. more than 345 Gwh of electricity annually generate. For an average roof of 60 m2 that could supply 5 to 6 households; A planned investment between 118,218 and 167,296 DH, and an annual maintenance charge of 2%. This study may be an initial assessment of solar potential in the city, which can be used to support the management decision regarding investment in the urban solar system
Electrically controllable multicolor cholesteric laser.
A new strategy to obtain multicolor lasing from cholesteric liquid crystals is presented. A four layer cell is prepared with three different cholesteric layers and a layer containing a photoluminescent dye. The three cholesteric mixtures are prepared so that their photonic band gaps are partially overlapped. Through this combination, two laser lines are obtained in the same spot under the pumping beam irradiation. Eventually, one of the laser lines can be switched off if an electric field is applied to the first or the last cholesteric layer
Marine health of the Arabian Gulf: Drivers of pollution and assessment approaches focusing on desalination activities
The Arabian Gulf is one of the most adversely affected marine environments worldwide, which results from combined pollution drivers including climate change, oil and gas activities, and coastal anthropogenic disturbances. Desalination activities are one of the major marine pollution drivers regionally and internationally. Arabian Gulf countries represent a hotspot of desalination activities as they are responsible for nearly 50% of the global desalination capacity. Building desalination plants, up-taking seawater, and discharging untreated brine back into the sea adversely affects the biodiversity of the marine ecosystems. The present review attempted to reveal the potential negative effects of desalination plants on the Gulf's marine environments. We emphasised different conventional and innovative assessment tools used to assess the health of marine environments and evaluate the damage exerted by desalination activity in the Gulf. Finally, we suggested effective management approaches to tackle the issue including the significance of national regulations and regional cooperation
Potential of novel desert microalgae and cyanobacteria for commercial applications and CO2 sequestration
CO2 fixation by phototrophic microalgae and cyanobacteria is seen as a possible global carbon emissions reducer; however, novel microalgae and cyanobacterial strains with tolerance to elevated temperatures and CO2 concentrations are essential for further development of algae-based carbon capture. Four novel strains isolated from the Arabian Gulf were investigated for their thermotolerance and CO2-tolerance, as well as their carbon capture capability. Two strains, Leptolyngbya sp. and Picochlorum sp., grew well at 40 °C, with productivities of 106.6 ± 10.0 and 87.5 ± 2.1 mg biomass L−1 d−1, respectively. Tetraselmis sp. isolate showed the highest biomass productivity and carbon capture rate of 157.7 ± 10.3 mg biomass L−1 d−1 and 270.8 ± 23.9 mg CO2 L−1 d−1, respectively, both at 30 °C. Under 20% CO2, the biomass productivity increased over 2-fold for both Tetraselmis and Picochlorum isolates, to 333.8 ± 41.1 and 244.7 ± 29.5 mg biomass L−1 d−1. These two isolates also presented significant amounts of lipids, up to 25.6 ± 0.9% and 28.0 ± 2.0% (w/w), as well as presence of EPA and DHA. Picochlorum sp. was found to have a suitable FAME profile for biodiesel production. Both Tetraselmis and Picochlorum isolates showed promising characteristics, making them valuable strains for further investigation towards commercial applications and CO2 capture.The authors would like to thank Mahroof Eroth, Dr. Ahmed Easa, and Dr. Abdulrahman Al Muftah from Qatar University, Andy Selwood from Cawthron Institute, and the QDVC team for their support. This work was supported by QDVC and Qatar University [Project QUEX-CAS-QDVC-14/15-7]
- …