3,778 research outputs found

    A Time Dependent Multi-Determinant approach to nuclear dynamics

    Full text link
    We study a multi-determinant approach to the time evolution of the nuclear wave functions (TDMD). We employ the Dirac variational principle and use as anzatz for the nuclear wave-function a linear combination of Slater determinants and derive the equations of motion. We demonstrate explicitly that the norm of the wave function and the energy are conserved during the time evolution. This approach is a direct generalization of the time dependent Hartree-Fock method. We apply this approach to a case study of 6Li{}^6Li using the N3LO interaction renormalized to 4 major harmonic oscillator shells. We solve the TDMD equations of motion using Krylov subspace methods of Lanczos type. We discuss as an application the isoscalar monopole strength function.Comment: 38 pages, additional calculations included. Accepted for publication, Int. J. of Mod. Phys.

    Solutions for certain classes of Riccati differential equation

    Full text link
    We derive some analytic closed-form solutions for a class of Riccati equation y'(x)-\lambda_0(x)y(x)\pm y^2(x)=\pm s_0(x), where \lambda_0(x), s_0(x) are C^{\infty}-functions. We show that if \delta_n=\lambda_n s_{n-1}-\lambda_{n-1}s_n=0, where \lambda_{n}= \lambda_{n-1}^\prime+s_{n-1}+\lambda_0\lambda_{n-1} and s_{n}=s_{n-1}^\prime+s_0\lambda_{k-1}, n=1,2,..., then The Riccati equation has a solution given by y(x)=\mp s_{n-1}(x)/\lambda_{n-1}(x). Extension to the generalized Riccati equation y'(x)+P(x)y(x)+Q(x)y^2(x)=R(x) is also investigated.Comment: 10 page

    Duality in Off-Shell Electromagnetism

    Full text link
    In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.Comment: 18 page

    Clustered bottlenecks in mRNA translation and protein synthesis

    Full text link
    We construct an algorithm that generates large, band-diagonal transition matrices for a totally asymmetric exclusion process (TASEP) with local hopping rate inhomogeneities. The matrices are diagonalized numerically to find steady-state currents of TASEPs with local variations in hopping rate. The results are then used to investigate clustering of slow codons along mRNA. Ribosome density profiles near neighboring clusters of slow codons interact, enhancing suppression of ribosome throughput when such bottlenecks are closely spaced. Increasing the slow codon cluster size, beyond 34\approx 3-4, does not significantly reduce ribosome current. Our results are verified by extensive Monte-Carlo simulations and provide a biologically-motivated explanation for the experimentally-observed clustering of low-usage codons

    Developing a Performance Criteria for Stone Columns to Improve Surface Pavement for Weak Subgrade Conditions

    Get PDF
    AbstractSoft, saturated, fine grained subgrade soils are distinguished by their low undrianed shear strength and high compressibility. Such soils cover most of the middle and southern parts of Iraq. The effect of using stone column, encased in geogrid and steel mesh to improve pavement's performance is experimentally investigated and evaluated. To compare the experimental and analytical outputs, three dimensions finite element throughout elastic and elasto-plastic models using ABAQUS ver.6.12.3 software are developed to simulate and analyze the relations between the cycling load and deformation of the suggested pavement modes. Based on the results and the limitation of this study it is concluded that, using encased stone columns, is more practical and suitable alternative to improve weak subgrade against permanent deformation as compared with the other simulated pavement modes. The results of ABAQUS program are very close to results of laboratory tests

    Energies and wave functions for a soft-core Coulomb potential

    Get PDF
    For the family of model soft Coulomb potentials represented by V(r) = -\frac{Z}{(r^q+\beta^q)^{\frac{1}{q}}}, with the parameters Z>0, \beta>0, q \ge 1, it is shown analytically that the potentials and eigenvalues, E_{\nu\ell}, are monotonic in each parameter. The potential envelope method is applied to obtain approximate analytic estimates in terms of the known exact spectra for pure power potentials. For the case q =1, the Asymptotic Iteration Method is used to find exact analytic results for the eigenvalues E_{\nu\ell} and corresponding wave functions, expressed in terms of Z and \beta. A proof is presented establishing the general concavity of the scaled electron density near the nucleus resulting from the truncated potentials for all q. Based on an analysis of extensive numerical calculations, it is conjectured that the crossing between the pair of states [(\nu,\ell),(\nu',\ell')], is given by the condition \nu'\geq (\nu+1) and \ell' \geq (\ell+3). The significance of these results for the interaction of an intense laser field with an atom is pointed out. Differences in the observed level-crossing effects between the soft potentials and the hydrogen atom confined inside an impenetrable sphere are discussed.Comment: 13 pages, 5 figures, title change, minor revision

    Closed-form sums for some perturbation series involving associated Laguerre polynomials

    Full text link
    Infinite series sum_{n=1}^infty {(alpha/2)_n / (n n!)}_1F_1(-n, gamma, x^2), where_1F_1(-n, gamma, x^2)={n!_(gamma)_n}L_n^(gamma-1)(x^2), appear in the first-order perturbation correction for the wavefunction of the generalized spiked harmonic oscillator Hamiltonian H = -d^2/dx^2 + B x^2 + A/x^2 + lambda/x^alpha 0 0, A >= 0. It is proved that the series is convergent for all x > 0 and 2 gamma > alpha, where gamma = 1 + (1/2)sqrt(1+4A). Closed-form sums are presented for these series for the cases alpha = 2, 4, and 6. A general formula for finding the sum for alpha/2 = 2 + m, m = 0,1,2, ..., in terms of associated Laguerre polynomials, is also provided.Comment: 16 page

    Green's function for a Schroedinger operator and some related summation formulas

    Full text link
    Summation formulas are obtained for products of associated Lagurre polynomials by means of the Green's function K for the Hamiltonian H = -{d^2\over dx^2} + x^2 + Ax^{-2}, A > 0. K is constructed by an application of a Mercer type theorem that arises in connection with integral equations. The new approach introduced in this paper may be useful for the construction of wider classes of generating function.Comment: 14 page

    Finite-Connectivity Spin-Glass Phase Diagrams and Low Density Parity Check Codes

    Get PDF
    We obtain phase diagrams of regular and irregular finite connectivity spin-glasses. Contact is firstly established between properties of the phase diagram and the performances of low density parity check codes (LDPC) within the Replica Symmetric (RS) ansatz. We then study the location of the dynamical and critical transition of these systems within the one step Replica Symmetry Breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that, away from the Nishimori line, in the low temperature region, the location of the dynamical transition line does change within the RSB theory, in comparison with the (RS) case. For LDPC decoding over the binary erasure channel we find, at zero temperature and rate R=1/4 an RS critical transition point located at p_c = 0.67 while the critical RSB transition point is located at p_c = 0.7450, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel (BSC) we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes within the RSB theory; the location of the dynamical transition point occurring at higher values of the channel noise. Possible practical implications to improve the performances of the state-of-the-art error correcting codes are discussed.Comment: 21 pages, 15 figure

    Cryptographical Properties of Ising Spin Systems

    Full text link
    The relation between Ising spin systems and public-key cryptography is investigated using methods of statistical physics. The insight gained from the analysis is used for devising a matrix-based cryptosystem whereby the ciphertext comprises products of the original message bits; these are selected by employing two predetermined randomly-constructed sparse matrices. The ciphertext is decrypted using methods of belief-propagation. The analyzed properties of the suggested cryptosystem show robustness against various attacks and competitive performance to modern cyptographical methods.Comment: 4 pages, 2 figure
    corecore