6,175 research outputs found

    Coherent states associated to the wavefunctions and the spectrum of the isotonic oscillator

    Full text link
    Classes of coherent states are presented by replacing the labeling parameter zz of Klauder-Perelomov type coherent states by confluent hypergeometric functions with specific parameters. Temporally stable coherent states for the isotonic oscillator Hamiltonian are presented and these states are identified as a particular case of the so-called Mittag-Leffler coherent states.Comment: 12 page

    Spectra generated by a confined softcore Coulomb potential

    Full text link
    Analytic and approximate solutions for the energy eigenvalues generated by a confined softcore Coulomb potentials of the form a/(r+\beta) in d>1 dimensions are constructed. The confinement is effected by linear and harmonic-oscillator potential terms, and also through `hard confinement' by means of an impenetrable spherical box. A byproduct of this work is the construction of polynomial solutions for a number of linear differential equations with polynomial coefficients, along with the necessary and sufficient conditions for the existence of such solutions. Very accurate approximate solutions for the general problem with arbitrary potential parameters are found by use of the asymptotic iteration method.Comment: 17 pages, 2 figure

    Impact of layer defects in ferroelectric thin films

    Full text link
    Based on a modified Ising model in a transverse field we demonstrate that defect layers in ferroelectric thin films, such as layers with impurities, vacancies or dislocations, are able to induce a strong increase or decrease of the polarization depending on the variation of the exchange interaction within the defect layers. A Green's function technique enables us to calculate the polarization, the excitation energy and the critical temperature of the material with structural defects. Numerically we find the polarization as function of temperature, film thickness and the interaction strengths between the layers. The theoretical results are in reasonable accordance to experimental datas of different ferroelectric thin films.Comment: 17 pages, 8 figure

    Analysis of ensemble learning using simple perceptrons based on online learning theory

    Full text link
    Ensemble learning of KK nonlinear perceptrons, which determine their outputs by sign functions, is discussed within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be calculated by using two order parameters, that is, the similarity between a teacher and a student, and the similarity among students. The differential equations that describe the dynamical behaviors of these order parameters are derived in the case of general learning rules. The concrete forms of these differential equations are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning and AdaTron learning. Ensemble generalization errors of these three rules are calculated by using the results determined by solving their differential equations. As a result, these three rules show different characteristics in their affinity for ensemble learning, that is ``maintaining variety among students." Results show that AdaTron learning is superior to the other two rules with respect to that affinity.Comment: 30 pages, 17 figure

    Dynamical replica theoretic analysis of CDMA detection dynamics

    Full text link
    We investigate the detection dynamics of the Gibbs sampler for code-division multiple access (CDMA) multiuser detection. Our approach is based upon dynamical replica theory which allows an analytic approximation to the dynamics. We use this tool to investigate the basins of attraction when phase coexistence occurs and examine its efficacy via comparison with Monte Carlo simulations.Comment: 18 pages, 2 figure

    Inference by replication in densely connected systems

    Get PDF
    An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica symmetric (RS) like structure to include a more complex one-step replica symmetry breaking (1RSB)-like ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in Code Division Multiple Access (CDMA) under different noise models. Results obtained under the RS assumption in the non-critical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behaviour, resulting in an improvement in performance.Comment: 47 pages, 7 figure

    On-line Learning of an Unlearnable True Teacher through Mobile Ensemble Teachers

    Full text link
    On-line learning of a hierarchical learning model is studied by a method from statistical mechanics. In our model a student of a simple perceptron learns from not a true teacher directly, but ensemble teachers who learn from the true teacher with a perceptron learning rule. Since the true teacher and the ensemble teachers are expressed as non-monotonic perceptron and simple ones, respectively, the ensemble teachers go around the unlearnable true teacher with the distance between them fixed in an asymptotic steady state. The generalization performance of the student is shown to exceed that of the ensemble teachers in a transient state, as was shown in similar ensemble-teachers models. Further, it is found that moving the ensemble teachers even in the steady state, in contrast to the fixed ensemble teachers, is efficient for the performance of the student.Comment: 18 pages, 8 figure

    Storage capacity of correlated perceptrons

    Full text link
    We consider an ensemble of KK single-layer perceptrons exposed to random inputs and investigate the conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations between the outputs occur. A general formalism is introduced using a multi-perceptron costfunction that allows to determine the maximal number of random inputs as a function of the desired values of the correlations. Replica-symmetric results for K=2K=2 and K=3K=3 are compared with properties of two-layer networks of tree-structure and fixed Boolean function between hidden units and output. The results show which correlations in the hidden layer of multi-layer neural networks are crucial for the value of the storage capacity.Comment: 16 pages, Latex2

    Composite CDMA - A statistical mechanics analysis

    Get PDF
    Code Division Multiple Access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particular attractive as it provides robustness and flexibility in utilising multi-access channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble, here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. In both the large size limit and finite systems we demonstrate scenarios in which the composite code has typical performance exceeding sparse and dense codes at equivalent signal to noise ratio.Comment: 23 pages, 11 figures, Sigma Phi 2008 conference submission - submitted to J.Stat.Mec
    • …
    corecore