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Abstra
t

An e�
ient Bayesian inferen
e method for problems that 
an be mapped onto dense graphs is pre-

sented. The approa
h is based on message passing where messages are averaged over a large number of

repli
ated variable systems exposed to the same evidential nodes. An assumption about the symmetry of

the solutions is required for 
arrying out the averages; here we extend the previous derivation based on

a repli
a symmetri
 (RS) like stru
ture to in
lude a more 
omplex one-step repli
a symmetry breaking

(1RSB)-like ansatz. To demonstrate the potential of the approa
h it is employed for studying 
riti
al

properties of the Ising linear per
eptron and for multiuser dete
tion in Code Division Multiple A

ess

(CDMA) under di�erent noise models. Results obtained under the RS assumption in the non-
riti
al

regime give rise to a highly e�
ient signal dete
tion algorithm in the 
ontext of CDMA; while in the


riti
al regime one observes a �rst order transition line that ends in a 
ontinuous phase transition point.

Finite size e�e
ts are also observed. While the 1RSB ansatz is not required for the original problems,

it was applied to the CDMA signal dete
tion problem with a more 
omplex noise model that exhibits

RSB behaviour, resulting in an improvement in performan
e.

PACS numbers: 89.70.+
, 75.10.Nr, 64.60.Cn
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I. INTRODUCTION

E�
ient inferen
e in large 
omplex systems is a major 
hallenge with signi�
ant impli
ations in

s
ien
e, engineering and 
omputing. Exa
t inferen
e is 
omputationally hard in 
omplex systems

and a range of approximation methods have been devised over the years, many of whi
h have

been originated in the physi
s literature [1℄. A re
ent review [2℄ highlights the links between the

various approximation methods and their appli
ations.

Approximative Bayesian inferen
e te
hniques arguably o�er the most prin
ipled approa
h to in-

formation extra
tion, by 
ombining a rigorous statisti
al approa
h with a feasible but systemati


approximation. Although message passing te
hniques have existed for some time in the 
omputer

s
ien
e 
ommunity [3, 4℄ they have enjoyed growing popularity in re
ent years [5℄, mainly within

the 
ontext of Bayesian networks and the use of Belief Propagation (BP) for a range of inferen
e

appli
ations, from signal extra
tion in tele
ommuni
ation to ma
hine learning.

The main advantage of these te
hniques is their moderate growth in 
omputational 
ost, with

respe
t to the systems size, due to the lo
al nature of the 
al
ulation when applied to sparse

graphs. Until re
ently, message passing te
hniques were deemed unsuitable for inferen
e in

densely 
onne
ted systems due to the inherently high number of short loops in the 
orresponding

graphi
al representation, and the large number of 
onne
tions per node, whi
h results in a high


omputational 
ost. Both properties are 
onsidered prohibitive to the use of 
onventional message

passing te
hniques in su
h problems.

A re
ently suggested method for message passing in densely 
onne
ted systems [6℄ relies on

repla
ing individual messages by averages sampled from a Gaussian distribution of some mean

and varian
e that are modi�ed iteratively. The method has been applied for the CDMA signal

dete
tion inferen
e problem; it su

essfully �nds optimal solutions where the spa
e of solutions

is 
ontiguous but breaks down when the solution spa
e be
omes fragmented, for instan
e, when

there is a mismat
h between the true and assumed noise levels in the CDMA dete
tion problem.

The emergen
e of 
ompeting solutions gives rise to 
on�i
ting messages that result in bungled
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average messages and suboptimal performan
e. In statisti
al physi
s terms, it 
orresponds to

the repli
a symmetri
 solution in dense systems [7℄ and gives poor estimates when more 
omplex

solution stru
tures are required.

In the 
urrent paper, we methodologi
ally extend the approa
h of Kabashima [6℄ for inferen
e

in dense graphs by 
onsidering a large (in�nite) number of repli
ated variable systems, exposed

to the same evidential data (re
eived signals). Ea
h one of the systems represents a pure state

and a possible solution. The pseudo posteriors, that form the basis for our estimates, are based

on averages over the repli
ated systems. The method has been employed previously only in

the non-
riti
al regime [8℄, using the most basi
 (RS-like) ansatz for the solution stru
ture.

In the 
urrent paper we study both 
riti
al and non-
riti
al regimes and extend the solution

stru
ture 
onsidered to in
lude step repli
a symmetry breaking (1RSB) like stru
tures [9℄. To

demonstrate the potential of this approa
h and the performan
e obtained using the resulting

algorithm we apply the method to two di�erent but related problems: signal dete
tion in Code

Division Multiple A

ess (CDMA) and learning in the Ising linear per
eptron (ILP).

We investigate both RS and 1RSB-like stru
tures. The former is applied to both CDMA and ILP

problems and seems to be su�
ient for obtaining optimal performan
es; the latter is applied to

a variant of the CDMA signal dete
tion problem with a more 
omplex noise model that exhibits

RSB-like behaviour, to demonstrate its e�
a
y for parti
ularly di�
ult inferen
e tasks.

In se
tion II we will introdu
e the general models studied, followed by a brief review of message

passing te
hniques for dense systems in se
tion III. The general derivation of our approa
h, for

both RS and RSB-like solution stru
tures, will be presented in se
tion IV; numeri
al studies of

both CDMA signal dete
tion and ILP learning will be reported in se
tion V. To demonstrate

the method based on the more 
omplex 1RSB solution stru
ture, and to examine its e�
a
y to

problems that require su
h stru
tures, we will introdu
e a variant of the CDMA signal dete
tion

problem and study it numeri
ally in se
tion VI. We will 
on
lude the presentation with a

summary and point to future resear
h dire
tions. Details of the derivation will be provided in

Appendi
es A-E.
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II. MODELS STUDIED

Before des
ribing the inferen
e method, the approa
h taken and the algorithms derived from it,

it would be helpful to brie�y des
ribe the exemplar inferen
e problems ta
kled in this paper.

We apply the method to two di�erent but related inferen
e problems: signal dete
tion in CDMA

and learning in the Ising linear per
eptron (ILP). Both 
orrespond to inferen
e problems where

data points are noisy representations of sums of binary variables modulated by random binary

values.

Multiple a

ess 
ommuni
ation refers to the transmission of multiple messages to a single re-


eiver. The s
enario we study here, des
ribed s
hemati
ally in �gure 1(a), is that of K users

transmitting independent messages over an additive white Gaussian noise (AWGN) 
hannel of

zero mean and varian
e σ2
0 . Various methods are in pla
e for separating the messages, in parti
-

ular Time, Frequen
y and Code Division Multiple A

ess [10℄. The latter, is based on spreading

the signal by using K individual random binary spreading 
odes of spreading fa
tor N . We 
on-

sider the large-system limit, in whi
h the number of users K tends to in�nity while the system

load β ≡ K/N is kept to be O(1). We fo
us on a CDMA system using binary phase shift keying

(BPSK) symbols and will assume the power is 
ompletely 
ontrolled to unit energy. The re
eived

aggregated, modulated and 
orrupted signal is of the form:

yµ =
1√
N

K∑

k=1

sµkbk + σ0nµ (1)

where bk is the bit transmitted by user k, sµk is the spreading 
hip value, nµ is the Gaussian

noise variable drawn from N (0, 1), and yµ the re
eived message. The task is to infer the original

transmission from the set of re
eived messages. This pro
ess is reminis
ent of the learning task

performed by a per
eptron with binary weights and linear output, whi
h is the next example


onsidered in this paper.

Learning in neural networks has attra
ted 
onsiderable theoreti
al interest. In parti
ular we

fo
us on supervised learning from examples, whi
h relies on a training set 
onsisting of examples

4



1b̂

2b̂

Kb̂

Detection
& Decoding

y

σ0

+

✕

✕

s2

✕

s1

2

1

bK

b

b

Ks

Noise

1s s 2

b1 b2

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

y

bK

s K

(a) (b)

Figure 1: S
hemati
 representation of (a) the CDMA system. (b) the ILP.

of the target task [11℄. We 
onsider a per
eptron, des
ribed s
hemati
ally in �gure 1(b), whi
h

is a network that sums a single layer of inputs sµk with synapti
 weights bk and passes the result

through a transfer fun
tion yµ

yµ = g

(
1√
K

K∑

k=1

sµkbk

)
, (2)

where g is typi
ally a non-linear sigmoidal fun
tion. If g(x) = x the network is termed linear

output per
eptron. If the weights bk ∈ {±1} the network is 
alled Ising per
eptron. Learning is a

sear
h through the weight spa
e for the per
eptron that best approximates a target rule.

The similarity between the linear per
eptron of equation (2) and the CDMA dete
tion problem

of Eq.(1) allows for a dire
t relation between the two problems to be established. The main

di�eren
e between the problems is the regime of interest. While CDMA dete
tion appli
ations

are of interest mainly for non-
riti
al low load values, ILP studies fo
used on the 
riti
al regime.

We 
onsider both regimes in this paper.
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III. MESSAGE PASSING FOR INFERENCE IN DENSELY CONNECTED SYSTEMS

Graphi
al models (Bayes belief networks) provide a powerful framework for modelling statisti
al

dependen
ies between variables [3, 4, 5℄. They play an essential role in devising a prin
ipled

probabilisti
 framework for inferen
e in a broad range of appli
ations.

Message passing te
hniques are typi
ally used for inferen
e in graphi
al models that 
an be

represented by a sparse graph with a few (typi
ally long) loops. They are aimed at obtaining

(pseudo) posterior estimates for the system's variables by iteratively passing messages (lo
ally


al
ulated 
onditional probabilities) between variables. Iterative message passing of this type is

guaranteed to 
onverge to the globally 
orre
t estimate when the system is tree-like; there are

no su
h guarantees for systems with loops even in the 
ase of large loops and a lo
al tree-like

stru
ture (although message passing te
hniques have been used su

essfully in loopy systems,

supported by some limited theory [12℄). A 
lear link has been established between 
ertain mes-

sage passing algorithms and well known methods of statisti
al me
hani
s [2℄ su
h as the Bethe

approximation [13, 14℄.

These inherent limitations seem to prevent the use of message passing te
hniques in densely 
on-

ne
ted systems due to their high 
onne
tivity, implying an exponentially growing 
ost, and an

exponential number of loops. However, an ex
iting new approa
h has been re
ently suggested [6℄

for extending BP te
hniques [3, 4, 5℄ to densely 
onne
ted systems. In this approa
h, messages

are grouped together, giving rise to a ma
ros
opi
 random variable, drawn from a Gaussian dis-

tribution of varying mean and varian
e for ea
h of the nodes. The te
hnique has been su

essfully

applied to CDMA signal dete
tion problems and the results reported are 
ompetitive with those

of other state-of-the-art te
hniques. However, the 
urrent approa
h has some inherent limita-

tions [6℄, presumably due to its similarity to the repli
a symmetri
 solution in the equivalent

Ising spin models [1, 7℄.

In a separate re
ent development [15℄, the repli
a-symmetri
-equivalent BP has been extended

to Survey Propagation (SP), whi
h 
orresponds to one-step repli
a symmetry breaking in di-
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luted systems. This new algorithm, motivated by the theoreti
al physi
s interpretation of su
h

problems, has been highly su

essful in solving hard 
omputational problems [15℄, far beyond

other existing approa
hes. In addition, the algorithm fa
ilitated theoreti
al studies of the 
orre-

sponding physi
al system and 
ontributed to our understanding of it [16℄. The SP algorithm has

re
ently been modi�ed to handle Ising and multilayer per
eptrons [17℄.

IV. GENERAL FORMALISM

We re
ently presented a new approa
h [8℄ for inferen
e in densely 
onne
ted systems, whi
h

was inspired by both the extension of BP to densely 
onne
ted graphs and the introdu
tion of

SP. The systems we 
onsider here are 
hara
terised by multipli
ity of pure states and a possible

fragmentation of the spa
e of solutions. To address the inferen
e problem in su
h 
ases we


onsider an ensemble of repli
ated systems where averages are taken over the ensemble of potential

solutions. This amounts to the presentation of a new graph, where the observables yµ are linked

to variables in all repli
ated systems, namely B=(b1,b2, . . . ,bn); where ba=(ba1, b
a

2, . . . , b
a

K)
T

, as

shown in �gure 2. To estimate the variables B given the data yT=(y1, y2, . . . , yN), in a Bayesian

framework, we have to maximise the posterior P (B|y)∝∏N
µ=1 P (yµ|B)P (B) , where we have


onsidered independent data, and thus P (y|B)=
∏N

µ=1 P (yµ|B).

The likelihood so de�ned is of a general form; the expli
it expression depends on the parti
ular

problem studied. Here, we are interested in 
ases where b ∈ {±1}K is an unbiased ve
tor and

P (B)=2−Kn
. The estimate we would like to obtain is the maximiser of the posterior marginal

(MPM) b̂k = argmax
bk∈{±1}n

∑
{bl 6=k} P (B|y) , whi
h is expe
ted to be a ve
tor with equal

entries for all repli
a b̂1k = b̂2k = · · · = b̂nk . The number of operations required to obtain the full

MPM estimator is of O
(
2K
)
whi
h is infeasible for large K values.

To obtain an approximate MPM estimate we apply BP message passing te
hnique [3, 4, 5℄. In

parti
ular we are interested here in the appli
ation of BP to densely 
onne
ted graphs, similar

to the one presented in [6℄. The latter is based on estimating a single solution and therefore does

7
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Figure 2: Repli
ated solutions B=(b1, b2, ..,bK) given data.

not 
onverge, as has been observed, when the solution spa
e be
omes fragmented and multiple

solutions emerge. This arguably 
orresponds to the repli
a symmetry breaking phenomena and

o

urs, for instan
e, when the noise level is unknown in the CDMA signal dete
tion 
ase.

A potential algorithmi
 improvement is a
hieved by the introdu
tion of an SP-like approa
h,

based on repli
ated variable systems, similar to the approa
h taken in problems that 
an be

mapped onto sparsely 
onne
ted graphs.

Using Bayes rule one straightforwardly obtains the BP equations:

P t+1 (yµ|bk, {yν 6=µ}) =
∑

{bl 6=k}
P (yµ|B)

∏

l 6=k

P t (bl| {yν 6=µ}) (3)

P t (bl| {yν 6=µ}) ∝
∏

ν 6=µ

P t (yν |bl, {yσ 6=ν}) . (4)

For 
al
ulating the posterior P (y|B) , we assume a dependen
y of the data on the parameters

of the form yµ = F
(∑K

l=1 εµlbl;γ
)
, where F is some general smooth fun
tion, γ are model

parameters and εµl are small enough to ensure that

∑K
l=1 εµlb

a
l ∼ O(1). We de�ne the ve
tor

∆µ ≡∑K
l=1 εµlbl =

∑
l 6=k εµlbl + εµkbk = ∆µk + εµkbk. Thus, using yµ = F (∆µk + εµkbk;γ) we

8




an model the likelihood su
h that

P (yµ|B) =

∫
d∆µkP (yµ,∆µk|B;γ)

=

∫
d∆µkP (yµ|∆µk,B;γ)P (∆µk|B)

=

∫
d∆µkP (yµ|∆µk + εµkbk;γ)P (∆µk|B)

≃
∫

d∆µk

[
1 + εµkb

T

k∇∆µk
lnP (yµ|∆µk;γ)

]
P (yµ|∆µk;γ) P (∆µk|B) , (5)

where we have assumed that P (yµ|∆µk,B;γ) ≈ P (yµ|∆µk + εµkbk;γ),

due to the assumed dependen
e of the observed values yµ on ∆µk and bk.

A. Inter-repli
a 
orrelations

An expli
it expression for inter-dependen
e between solutions is required for obtaining a 
losed

set of update equations. We assume a dependen
e of the form

P t (bk |{yν 6=µ}) ∝ exp

{
htT
µk bk +

1

2
bTkQ

t
µk bk

}
, (6)

where ht
µk is a ve
tor representing an external �eld andQt

µk the matrix of 
ross-repli
a intera
tion.

The form of Qt
µk depends upon the parti
ular 
ase 
onsidered. We assume one of the following

symmetry relation between the repli
ated solutions:

(
ht
µk

)ℓa
= ht

µk, and

(
(RS)Qt

µk

)aa′
= δaa

′

qt0µk +
(
1− δaa

′
)
qt1µk or

(
(1RSB)Qt

µk

)ℓa ℓ′a′

= δℓℓ
′ ((RS)Qt

µk

)aa′
+
(
1− δℓℓ

′
)
qt2µk ,

where ℓ is a blo
k index that runs from 1 to L and `a' is a intra-blo
k repli
a index that runs

form 1 to n where n is the number of variables per blo
k. We also make the following reasonable

assumption qt0µk > qt1µk > qt2µk > 0, as one expe
ts 
orrelations to gradually de
rease between

variables with non-identi
al repli
a and blo
k indi
es, respe
tively.
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For both types of symmetries 
onsidered, the 
orrelation matrix de�ned as:

(
Υt

µk

)I I′ ≡
〈
∆I

µk∆
I
′

µk

〉
−
〈
∆I

µk

〉〈
∆I

′

µk

〉

where I is an index or a pair of indi
es for RS and 1RSB, respe
tively. The 
orrelation matrix

is assumed to be self-averaging, i.e. Υt
µk ≃ Υt

and preserves the symmetry of the matrix Qt
µk.

An expli
it derivation of the entries of Υt
is presented in Appendi
es A and B, for the RS and

RSB-like 
orrelation stru
tures, respe
tively; the matri
es take following the general form:

(
(RS)Υt

)aa′
= δaa

′

X t +
(
1− δaa

′
) 1

n
Rt

(
(1RSB)Υt

)aℓ a′ℓ′
= δℓℓ

′

[
δaa

′

X t +
(
1− δaa

′
) 1

n
V t

]
+
(
1− δℓℓ

′
) 1

nL

(
V t −Rt

)
.

Thus, for the appropriate 
entre of the distribution ut
µk (see equations (A8) and (B13)), the

probability of ∆µk 
an be expressed as:

P (∆µk|B) =

√
1

(2π)
n
det (Υt)

exp

{
−1

2

(
∆µk − u

t
µk

)T (
Υ

t
)
−1 (

∆µk − u
t
µk

)}
(7)

∝





∫
dϑ exp




−n

(
ϑ− utµk

)2

2Rt




∏n

a=1 exp




−

(
∆a

µk − ϑ
)2

2Xt





(RS)

∫
dΘ

∏L
ℓ=1 exp

{
−n

2

[ (
ϑ0
)2

V t −Rt
+

(
ϑℓ
)2

V t − L−1 (V t −Rt)

]}
∏n

a=1 exp




−

(
∆ℓa

µk − ϑ0ℓt
µk

)2

2 (Xt − n−1V t)





(RSB)

for the RS and RSB-like 
orrelation matri
es, respe
tively, where ϑ0ℓt
µk ≡ ϑ0 + ϑℓ + ut

µk and

ΘT =
(
ϑ0, ϑ1, . . . , ϑL

)
.

B. Messages

Having obtained the 
onditional probability distribution P (∆µk|B) one 
an then derive expli
it

expressions for the messages mµk (magnetisation) and m̂µk that 
an be viewed as parameters

in the 
orresponding marginalised binary distributions P t (yµ|bk, {yν 6=µ}) ∝ (1 + m̂t
µkbk)/2 and

P t (bk|{yν 6=µ}) = (1 +mt
µkbk)/2.
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The messages from nodes yµ to nodes bk, as derived in Appendix C, equations (C1)-(C8)

m̂t+1
µk =





εµk
ϑ̃t
µk − ut

µk

Rt
(RS)

εµk
ϑ̃t
µk − ut

µk

2V t − Rt
+

εµk
2n

P2V
t

1−P1V t
(RSB)

, (8)

where Pj =
∂jP
∂ϑj

∣∣∣∣
ϑ=ϑ̃t

µk

, P is de�ned in equation (C3) and ϑ̃t
µk is obtained from the saddle point

equations given by equation (D1) in the RS 
ase and by equation (D2) in the 1RSB 
ase. The

messages from nodes bk to yµ are given in both 
ases by the expression mt
µk ≃ tanh

(∑
ν 6=µ m̂

t
νk

)
.

For the gauged �eld bkh
t
µk where ht

µk ≡ artanh
(
mt

µk

)
=
∑

ν 6=µ artanh (m̂
t
νk) ≃

∑
ν 6=µ m̂

t
νk. The

distribution of this �eld is well approximated by a Gaussian as a result of the 
entral limit

theorem. The mean and varian
e of the Gaussian are Et
and F t

respe
tively:

Et =
1

K

K∑

k=1

N∑

µ=1

bkm̂
t
µk (9)

F t =

N∑

µ=1


 1

K

K∑

k=1

(
bkm̂

t
µk

)2 −
(

1

K

K∑

k=1

bkm̂
t
µk

)2

 ≃ 1

K

K∑

k=1

N∑

µ=1

(
m̂t

µk

)2
.

Both Et
and F t

are assumed to be independent of the index µ by virtue of the self-averaging prop-

erty. For the same reason we expe
t the ma
ros
opi
 variables de�ned asM t
µ ≡∑K

k=1 bkm
t
µk/K ≃

∑K
k=1 bkm

t
k/K = M t

and N t
µ ≡ ∑K

k=1

(
mt

µk

)2
/K ≃ ∑K

k=1 (m
t
k)

2
/K = N t

, where mt
k ≃

tanh
(∑N

ν=1 m̂
t
νk

)
, to be independent of the index µ. Thus, these ma
ros
opi
 variables 
an

be evaluated by the following integrals

M t =

∫
Du tanh

(√
F tu+ Et

)
N t =

∫
Du tanh2

(√
F tu+ Et

)
,

where Du = exp (−u2/2) /
√
2π.
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C. Optimisation

The stru
ture of the 
orrelation matrix used introdu
es free variables in the form of the 
orrela-

tion terms between repli
ated solutions. These are used for optimising the estimation provided

with respe
t to a given performan
e measure.

Sin
e the MPM estimator is given by b̂tk = sgn (mt
k) ≃ sgn

(
mt

µk

)
= sgn

(
ht
µk

)
, the expression for

the error per bit rate takes the form:

P t
b =

1

2K

K∑

k=1

(
1− sgn

(
bkm

t
k

))
, (10)

whi
h is minimised when the true message ve
tor b and the ve
tor of messages mt
are parallel.

Therefore, the error rate per bit de
reases as the ratio M t/
√
N t = cos

(
b̂mt

)
in
reases. The

optimal value is rea
hed when Et (γc) = F t (γc) and

∂Et

∂γi
− 1

2

Et

F t

∂F t

∂γi

∣∣∣∣
γc
i

= 0 as derived in

Appendix E.

V. CDMA AND LINEAR ISING PERCEPTRON

Using this notation one de�nes εµk = sµk/
√
N for the CDMA problem and εµk = sµk/

√
K for

the Ising per
eptron. The goal is to get an a

urate estimate of the ve
tor b for all users given the

re
eived message ve
tor y via a prin
ipled approximation of the posterior P (b|y). An expression

representing the likelihood is required and is easily derived from the noise model (assuming zero

mean and varian
e σ2
). If the arithmeti
 varian
e over repli
as of the ma
ros
opi
 message ∆a

µk

is �nite and independent of the sub indexes µ and k, i.e. Σ2 ≡ 1
n

∑
a

(
∆a

µk

)2 −
(
1
n

∑
a∆

a
µk

)2
<

∞ ∀µk, then P (yµ|B) 
an be expanded as

P (yµ|B) ≃
√

n

2πσ2
e

Σ2

2σ2 exp

{
−(yµ −∆µk)

T (yµ −∆µk)

2σ2

}[
1 +

εµk
σ2

bT

k (yµ −∆µk)
]
, (11)
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where yµ = yµu and uT ≡
nL︷ ︸︸ ︷

(1, 1, · · · , 1). The fun
tion P (ϑ, yµ), de�ned in equation (C4), and

obtained from this distribution is linear in ϑ; therefore, the se
ond derivative used for 
al
ulating

the messages in equation (8) P2 = 0 and the 
orresponding stru
ture of the 
orrelation matrix is

RS-like.

To 
al
ulate 
orrelations between repli
a we expand P (yµ|B) in the large N limit in (11), as

shown in equation (5). A

ording to the RS 
orrelation assumption, the ma
ros
opi
 variables

satisfy the following relation:

ut
µk =

1√
e1N

∑

l 6=k

sµlm
t
µl

X t ≃ e2
(
1−N t

)
,

where e1 = 1 (β) for the CDMA (ILP) system and e2 = β (1) for the CDMA (ILP) systems,

respe
tively, due to the 
hange in s
aling. The saddle point equation (C6) provides a dominant

value for the variable ϑ

ϑ̃ =
Rt

σ2 +X t +Rt

(
σ2ut

µk

X t +Rt
+ yµ

)
.

A. Messages

The message from yµ to bak at time t + 1 is then given by:

m̂t+1
µk = εµk

yµ − ut
µk

σ2 +X t +Rt
. (12)

The main di�eren
e between equation (12) and the equivalent equation in [6℄ is the dependen
e

of the pre-fa
tor on Rt
, re�e
ting 
orrelations between di�erent solutions groups (repli
a). To

determine this term we optimise the 
hoi
e of σ2
by applying the 
ondition Et = F t

. For
ing this


ondition leads to a relation between the stru
ture of the spa
e of solutions, represented by Rt
,

and the free parameter of the model σ2
. From equation (12) and using Et = F t

and M t = N t

13



one obtains:

Et+1 =
e−1
1

σ2 +X t +Rt
F t+1 = e1

[
σ2
0 +X t

] (
Et+1

)2
,

whi
h imply, after simpli�
ation, that for both 
ases Rt = σ2
0 − σ2

. Despite the simpli
ity of this

result, the pro
ess from whi
h we obtained it provides us with a pra
ti
al way to estimate the true

noise varian
e. Noti
e that for 
al
ulating Et
and F t

we used the limits K,N → ∞with K/N =

β. So that σ2
0 , whi
h appears in the expression for F t

, 
an be obtained from the signal ve
tor of

yµ with an in�nite number of entries. Thus

lim
N→∞

1

N

N∑

µ=1

(yµ)
2 = e2 + σ2

0 .

Using this expression we 
an �nally express the message as:

m̂t+1
µk ≃ εµk

yµ − ut
µk

1

N

N∑

µ=1

(yµ)
2 − e2N t

, (13)

where no prior belief of σ is required.

B. Steady state and 
riti
al analysis

The steady state equations for the ma
ros
opi
 variables N t
and Et

are obtained by taken the

limit t → ∞. Let us de�ne N ≡ limt→∞N t
and E ≡ limt→∞ Et

. In the asymptoti
 regime the

following relations hold:

N
(
σ2
0, β
)
=

∫
Du tanh2

(√
E (σ2

0 , β)u+ E
(
σ2
0, β
))

(14)

E
(
σ2
0, β
)
=

e−1
1

σ2
0 + e2

(
1−N (σ2

0, β)
)

and from these expressions one 
an obtain the full expression for the error per bit rate:

P b

(
σ2
0 , β
)
=

1

2


1 + erf



√

E (σ2
0 , β)

2




 . (15)
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Figure 3: (a) Error probability of the inferred solution evolving in time. The system load β = 0.25,

true noise level σ2
0 = 0.25 and estimated noise σ2 = 0.01. Squares represent results of the original

algorithm [6℄, solid line the dynami
s obtained from our equations; 
ir
les represent results obtained

from the suggested pra
ti
al algorithm. Varian
es are smaller than the symbol size. (b) Dt
, a measure

of 
onvergen
e for the obtained solutions, as a fun
tion of time; symbols are as in the main �gure.

C. CDMA signal dete
tion - numeri
al results

The inferen
e algorithm requires an iterative update of equations (C9,13) and 
onverges to

a reliable estimate of the signal, with no need for prior information of the noise level. The


omputational 
omplexity of the algorithm is of O(K2).

To test the performan
e of our algorithm we 
arried out a set of experiments of the CDMA

signal dete
tion problem under typi
al 
onditions. Error probability of the inferred signals was


al
ulated for a system load of β=0.25, where the true noise level is σ2
0=0.25 and the estimated

noise is σ2=0.01, as shown in �gure 3(a). The solid line represents the expe
ted theoreti
al results

(density evolution), knowing the exa
t values of σ2
0 and σ2

, while 
ir
les represent simulation

results obtained via the suggested pra
ti
al algorithm, where no su
h knowledge is assumed.
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The results presented are based on 105 trials per point and a system size N = 2000 and are

superior to those obtained using the original algorithm [6℄.

Another performan
e measure one should 
onsider is

Dt ≡ 1

K

(
mt −mt−1

)
·
(
mt −mt−1

)
,

that provides an indi
ation to the stability of the solutions obtained. In �gure 3(b) we see that

results obtained from our algorithm show 
onvergen
e to a reliable solution in 
ontrast to the

original algorithm [6℄. The physi
al interpretation of the di�eren
e between the two results is

assumed to be related to a repli
a symmetry breaking phenomenon.

D. Ising linear per
eptron - numeri
al results

For the ILP, the K > N regime of high interest as the system develops a 
riti
al behaviour for a

range of σ2
0 values. We 
arried out a set of experiments for this system based on density evolution.

In �gure 4(a) we present 
urves of the bit error probability P b, de�ned in equation (15), as a

fun
tion of the inverse load β−1
for di�erent values of σ2

0 . Three di�erent regimes have been

observed: For σ2
0 < 0.1025 the 
urves exhibit a dis
ontinuity at a value of β that varies with σ2

0

(�rst order phase transition-like behaviour). At σ2
0 = 0.1025 the 
urve be
omes 
ontinuous but

its slope diverges (se
ond order phase transition-like behaviour). The P b 
urves show analyti
al

behaviour for noise values above 0.1025. Figure 4(b) exhibits a phase diagram of the ILP system;

it shows the dependen
y of the 
riti
al load β−1
C as a fun
tion of the noise parameter. The

�rst order transition line ends in a se
ond order transition point marked by a 
ir
le. The results

obtained, and in parti
ular the 
riti
al β value, are 
onsistent with those derived using the repli
a

symmetri
 statisti
al me
hani
s-based analysis of the problem [11℄.

Another indi
ation for the 
riti
al behaviour is the number of steps required for the re
ursive

update of equation (14) to 
onvergen
e. In �gure 5(a) we present the number of iterations

required to rea
h a steady state as a fun
tion of β−1
when the noise parameter is set to σ2

0 = 0.1.
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Figure 4: (a) The error probability P b at the steady state, equation (15), as a fun
tion of β
−1

for di�erent

values of the noise parameter. For values of σ2
0 below 0.1025 the 
urves show dis
ontinuity at 
ertain

β values, whi
h be
omes 
ontinuous but non-analyti
 at σ2
0 = 0.1025 around β−1 ≃ 0.68. For noise

varian
e values above σ2
0 = 0.1025 the 
urves be
ome analyti
al. (b) Position of the non analyti
ity of

the error rate 
urve β−1
C as a fun
tion of the noise parameter σ2

0. This �rst order phase transition-like


urve ends in a se
ond order phase transition-like point marked by (◦).

The number of iterations diverges when the 
riti
al value of β is rea
hed.

Finally, we wish to explore the e�
ien
y of the algorithm as a fun
tion of the system size.

In �gure 5(b) we present the result of iterating equations (C9) and (13) for a system size of

K=500. The 
urve presents mean values and error bars over 1000 experiments. There is a strong

dependen
y of the error per bit rate on the size of the system, whi
h is expe
ted to 
onverge to

the asymptoti
 limit (in�nite system size) represented by the solid line.
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Figure 5: (a) Number of iterations of equation (14) required for 
onvergen
e as a fun
tion of β, for

σ2
0 = 0.10; one 
learly identi�es the β value where the error rate 
urve exhibits a dis
ontinuity. (b)

Finite size e�e
ts are observed at all β values. The noise level used is σ2
0 = 0.10 with K = 500. The


urves provide mean values and error-bars over 1000 experiments. The solid 
urve obtained from the

iteration of the steady state equations is presented as a referen
e.

VI. CDMA SIGNAL DETECTION WITH DUAL-PEAKED GAUSSIAN NOISE

To demonstrate the suitability of the method for more 
omplex inferen
e problems that require

a system with 1RSB-like stru
tures, we will 
onsider the CDMA signal of equation (1) where the

noise nµ is drawn from a bi-Gaussian distribution:

P (nµ) =
1− r0

2

1√
2π

exp

{
−(nµ + ε0/σ0)

2

2

}
+

1 + r0
2

1√
2π

exp

{
−(nµ − ε0/σ0)

2

2

}
, (16)

where r0 ∈ (−1, 1) represents the bias and ±ε0/σ0 the positions of the Gaussian peaks. We


onsider the parti
ular 
ase where |ε0/σ0| ≪ 1, so that the Gaussian peaks are slightly o� 
entre.
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For this model the likelihood expression takes the form:

P
(
yµ|∆µ; r, ε, σ

2
)
∝

L∏

ℓ=1

n∏

a=1

{
1− r

2
exp

[
−
(
yµ −∆ℓa

µ + ε
)2

2σ2

]
+

1 + r

2
exp

[
−
(
yµ −∆ℓa

µ − ε
)2

2σ2

]}
,

where r, ε and σ2
are estimates of the true parameters r0, ε0 and σ2

0.

To derive the messages in this 
ase we �rst 
al
ulate the fun
tion P (ϑ, yµ) of equation (C4),

whi
h has the form:

P (ϑ, yµ) =
yµ − ϑ

σ2 +X t
− ε

σ2 +X t
tanh

(
ε
yµ − ϑ

σ2 +X t
+ arctanh(r)

)
,

where X t = β (1−N t) .

Following the derivation of Appendix C, the saddle point equations (D1) and (D2) 
an be

expressed as:

ϑ̃t
µk = ut

µk +W tP
(
ϑ̃t
µk, yµ

)

yµ − ϑ̃t
µk = yµ − ut

µk −W t
yµ − ϑ̃t

µk

σ2 +X t
+ ε

W t

σ2 +X t
tanh

(
ε
yµ − ϑ̃t

µk

σ2 +X t
+ arctanh(r)

)

yµ − ϑ̃t
µk

σ2 +X t
=

yµ − ut
µk

σ2 +X t +W t
+

ε

σ2 +X t

W t

σ2 +X t +W t
tanh

(
ε
yµ − ϑ̃t

µk

σ2 +X t
+ arctanh(r)

)

z = ρW
(
yµ − ut

µk

)
+ ε (ρ0 − ρW ) tanh (εz + arctanh(r))

≃ z0 + r∆ρW ε+
(
1− r2

)
∆ρW z ε2

−r
(
1− r2

)
∆ρW z2ε3 − 1

3

(
1− r2

) (
1− 3r2

)
∆ρW z3ε4 ,

where we denote W t = Rt
for the RS 
ase and W t = 2V t − Rt

for the 1RSB 
ase, z ≡ yµ−ϑ̃t
µk

σ2+Xt ,

ρA ≡ (σ2 +X t + A)
−1
, z0 ≡ ρW

(
yµ − ut

µk

)
and ∆ρW ≡ ρ0 − ρW .

The solution of this equation provides, up to order O (ε4),

z (ε) ≃ z0 + r∆ρW ε+
(
1− r2

)
∆ρW

[
z0ε

2 + r
(
∆ρW − z20

)
ε3 +

(
1− 3r2

)
z0

(
∆ρW − 1

3
z20

)
ε4
]
.
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The fun
tion P and its two �rst derivatives at the saddle point value are:

P0 = −r
[
1 +

(
1− r2

)
∆ρW ε2

]
ρW ε+

+
[
1−

(
1− r2

)
ρ2W ε2 −

(
1− r2

) (
1− 3r2

)
∆ρW ρ2W ε4

] (
yµ − ut

µk

)
+

+r
(
1− r2

)
ρ3W
(
yµ − ut

µk

)2
ε3 +

1

3

(
1− r2

) (
1− 3r2

)
ρ4W
(
yµ − ut

µk

)3
ε4

P1 ≃ −ρ0 +O
(
ε2
)

P2 = 2ρ30
(
1− r2

) [
rε3 +

(
1− 3r2

)
ρW
(
yµ − ut

µk

)
ε4
]
,

therefore, one 
an obtain the following expression, required for 
al
ulating the messages in the

1RSB 
ase (C8)

1

2

P2V
t

1− P1V t
=
(
1− r2

)
ρ0∆ρV

[
r ε3 +

(
1− 3r2

)
ρW
(
yµ − ut

µk

)
ε4
]
,

where ∆ρV ≡ ρ0 − ρV . This straightforwardly leads to the following expression for the message:

(1RSB)m̂t+1
µk =

sµk√
N

{
−
[
ρW +

(
1− r2

) (
Υn − ρ2W

)
ε2
]
r ε+

+ρW
[
1−

(
1− r2

)
ρW ε2 −

(
1− r2

) (
1− 3r2

) (
Υn − ρ2W

)
ε4
] (

yµ − ut
µk

)
+

+r
(
1− r2

)
ρ3W ε3

(
yµ − ut

µk

)2
+

1

3

(
1− r2

) (
1− 3r2

)
ρ4W ε4

(
yµ − ut

µk

)3
}

, (17)

where Υn ≡ ρ0
(
ρW − 1

n
∆ρV

)
. The expression for the message in the RS 
ase is re
overed from

equation (17) in the limit n → ∞.

A. Optimisation and messages

Cal
ulating the expressions for the ma
ros
opi
 variables Et+1
and F t+1

, used in the optimisation

pro
ess, requires performing the following sums, in the limit of K,N → ∞ with K/N = β < ∞:

Aj ≡ lim
K,N→∞

N∑

µ

1

K

K∑

k=1

sµkbk√
N

(
yµ − ut

µk

)j

Bl ≡ lim
K,N→∞

1

N

N∑

µ

1

K

K∑

k=1

(
yµ − ut

µk

)l
,
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where j = 0, . . . , 3 and l = 0, . . . , 4. From the de�nition of the signal yµ (1) and the expression

for the noise (16) we �nd that A0 = 0, A1 = 1, A2 = 2B1, A3 = 3B2, B0 = 1, B1 = r0ε0,

B2 = β (1− 2M t +N t) + σ2
0 + ε20, B3 = B1 (3B2 − 2ε20) and B4 = 3B2

2 − 2ε40. The expli
it

expressions derived for the ma
ros
opi
 variables are:

Et+1 = ρW −
(
1− r2

)
ρ2W ε2 + 2r

(
1− r2

)
B1ρ

3
W ε3 −

(
1− r2

) (
1− 3r2

) [
Υn − (1 +B2ρr) ρ

2
W

]
ρW ε4

F t+1 = B2ρ
2
W − 2rB1ρ

2
W ε

+
[
r2 − 2

(
1− r2

)
B2ρW

]
ρ2W ε2 − 2r

(
1− r2

)
B1

[
Υn − (2 + 3B2ρW ) ρ2W

]
ρW ε3 +

+
(
1− r2

) [
2r2
(
Υn − ρ2W

)
ρW +

(
1− 3r2

)
B2

(
3ρ2W + 2B2ρ

3
W − 2Υn

)
ρ2W
]
ε4 .

Applying the optimisation 
onditions of Appendix E, Et (γc) = F t (γc) and

∂Et

∂γi
− 1

2

Et

F t

∂F t

∂γi

∣∣∣∣
γc
i

= 0, where γT =
(
r, ε, σ2, 1

n

)
one obtain the following 
onditions:

ρW =
1

B2

+
ε2

B2
2

− ε4

B3
2

+
(
1− r2

)2 1−B2ρ0
(
1− 1

n
B2∆ρV

)

B3
2

ε4 (18)

r ε = B1 + r
(
1− r2

) 1−B2ρ0
(
1− 1

n
B2∆ρV

)

B2
ε3 . (19)

In the 1RSB 
ase one 
an further simplify these expressions by a suitable 
hoi
e of V t
and the

number of repli
as per blo
k n. Optimisation with respe
t to the latter results in

1 = B2ρ0

(
1− 1

n
B2∆ρV

)
, (20)

whi
h implies

V t =
(X t + σ2)

2
(σ2

0 − σ2)
1

n

(
X t + σ2

0

)2 −
(
X t + σ2

) (
σ2
0 − σ2

) ,

that by de�nition is larger than zero. This 
ondition is satis�ed if our estimate for the noise

varian
e is smaller than the true parameter (σ2 < σ2
0). In this 
ase the number of repli
as per

blo
k has to satisfy the 
ondition

1 ≤ n ≤ f
(
X t; σ2

0, σ
2
)
≡ (X t + σ2

0)
2

(X t + σ2) (σ2
0 − σ2)

.
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Interestingly this ties the noise level mismat
h to the number of repli
as, thus giving further

insight to the role played by the stru
ture of the inter-repli
a 
orrelation matrix.

For 0 ≤ X t
, the minimum value of f (X t; σ2

0, σ
2) is rea
hed at Xmin = max (0, σ2

0 − 2σ2). It is

also possible to prove that 4 ≤ f (Xmin; σ
2
0, σ

2) . Although V t
and n will not be expli
itly used in

the following expressions, the 
orre
t 
hoi
e of the value for these parameters allows one to use

equations (18) and (19) in order to �nd the �nal expression for the ma
ros
opi
 variable Et+1
,

where no estimates are needed for the noise parameters:

(1RSB)Et+1 =
1

B2 − B2
1

.

Note that in the RS 
ase we do not have the freedom to 
hoose the number of repli
as per

blo
k, given that this 
ase is equivalent to take n → ∞ in the absen
e of the additional repli
a

l = 1, . . . , L. For this reason equations (18) and (19) and (19) take the form:

ρW =
1

B2
+

ε2

B2
2

− ε4

B3
2

+
(
1− r2

)2 1− B2ρ0
B3

2

ε4 (21)

r ε = B1 + r
(
1− r2

) 1− B2ρ0
B2

ε3 , (22)

and the ma
ros
opi
 variable

(RS)Et+1 = (1RSB)Et+1 +
2B2

1 (ε
2 − B2

1)

B3
2

(
B2

X t + σ2
− 1

)
,

whi
h depends on both estimates of the noise varian
e σ2
and bias ε.

Given that the algorithm deals with �nite signal ve
tors (N < ∞), the quantities B1 and B2

have to be approximated by the 
orrespondent �nite sums. Therefore, we have:

B1 = lim
N,K→∞

1

N

N∑

µ=1

1

K

K∑

k=1

(
yµ − ut

µk

)
≈ 1

N

N∑

µ=1

yµ ≡ B1 (23)

B2 = lim
N,K→∞

1

N

N∑

µ=1

1

K

K∑

k=1

(
yµ − ut

µk

)2 ≈ 1

N

N∑

µ=1

y2µ + βN t ≡ B2 ,

where we used the fa
t that limN,K→∞
1

NK

∑
µ,k u

t
µk = 0. Observe that no information about the

true noise has been used to derive these expressions.
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Having the estimates (23) we 
an write down the messages expli
itly:

(1RSB)m̂t+1
µk =

sµk√
N

{
−B1

B2

+
B1

B
2

2

ε2 +

(
1

B2

+
B

2

1

B
2

2

− 3ε2 − 2B
2

1

B
3

2

ε2

)
(
yµ − ut

µk

)
+

+
B1

(
ε2 − B

2

1

)

B
3

2

(
yµ − ut

µk

)2
+

1

3

(
ε2 −B

2

1

)(
ε2 − 3B

2

1

)

B
4

2

(
yµ − ut

µk

)3




(RS)m̂t+1
µk = (1RSB)m̂t+1

µk +
sµk√
N

(
1− B2

X t + σ2

)
ε2 −B

2

1

B
2

2

[
B1 + 2

ε2 − 2B
2

1

B
2

2

(
yµ − ut

µk

)
]
,

whi
h 
an be now used re
ursively for obtaining the inferred solutions for this problem. Noti
e

that an estimate of both ε and σ in required in the RS 
ase.

B. Numeri
al results

To test the performan
e of the 1RSB algorithm we 
arried out a set of experiments of the

CDMA signal dete
tion problem with bi-Gaussian noise. The results shown in �gure 6(a) des
ribe

the error probability of the inferred signals as a fun
tion of the number of iterations has been


al
ulated using both RS and 1RSB-like 
orrelation matri
es for the 
ase of parameters mismat
h.

The system load used in the simulations was β=0.25, the true noise level σ2
0=0.25, Gaussian bias

of ε0 = 0.06 and weight r0 =0.6. The estimated noise parameters are σ2=0.01 and ε = 0.2. The


ir
les represent simulation results obtained via the 1RSB algorithm while the squares 
orrespond

to the RS-like stru
ture. The results presented are based on 105 trials per point and a system size

N =1000; error-bars are also provided. The results obtained using the 1RSB-like stru
ture are

superior to those obtained using the RS algorithm. As shown in �gure 6(b) using the stability

measure Dt
, both RS and 1RSB-based algorithms 
onverge to reliable solutions; the 1RSB-based

algorithm is slightly slower to 
onverge, presumably due to the more 
omplex message passing

s
heme.
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Figure 6: (a) Error probability of the inferred solution evolving in time, for the bi-Gaussian noise 
ase.

The system load β = 0.25, true noise level σ2
0 = 0.25 and estimated noise σ2 = 0.01. Squares represent

results of the RS algorithm and 
ir
les represent results obtained from the 1RSB algorithm. (b) Dt
,

a measure of 
onvergen
e in the obtained solutions, as a fun
tion of time; symbols are as in the main

�gure.

VII. CONCLUSIONS

We present and methodologi
ally develop a new algorithm for using BP in densely 
onne
ted

systems that enables one to obtain reliable solutions even when the solution spa
e is fragmented.

The algorithm relies on the introdu
tion of a large number of repli
ated variable systems exposed

to the same evidential nodes. Messages are obtained by averaging over all repli
ated systems

leading to pseudoposterior that is then used to infer the variable nodes most probable values.

This is done with no a
tual repli
ation, by introdu
ing an assumption about 
orrelations between

the repli
ated variables and exploiting the high number of repli
ated systems. The algorithm was

developed in a systemati
 manner to a

ommodate more 
omplex 
orrelation matri
es. It was

su

essfully applied to the CDMA signal dete
tion and ILP learning problems, using the RS-like
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orrelation matrix, and to the CDMA inferen
e problem with bi-modal Gaussian noise model

in the 1RSB-like 
orrelation matrix. The algorithm provides superior results to other existing

algorithms [6, 18℄ and a systemati
 improvement where more 
omplex 
orrelation matri
es are

introdu
ed, where required.

Further resear
h is required to fully determine the potential of the new algorithm. Two parti
ular

areas whi
h we 
onsider as parti
ularly promising are inferen
e problems 
hara
terised by dis
rete

data variables and noise model and problems that 
an be mapped onto sparse graphs. Both

a
tivities are 
urrently underway.
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Appendix A: THE REPLICA SYMMETRIC (RS) ANSATZ

Within the RS setting, the intera
tion term in equation (6) is:

bT

kQ
t
µkbk = n

(
qt0µk − qt1µk

)
+ qt1µk

(
n∑

a=1

bak

)2

,

A simpli�ed expression for equation (6) immediately follows

P t (bk| {yν 6=µ}) = [Z t
µk]

−1 exp



ht

µk

n∑

a=1

bak +
1

2
qt1µk

(
n∑

a=1

bak

)2




= [Z t
µk]

−1

∫ ∞

−∞
dx exp

{
− x2

2qt1µk
+
(
x+ ht

µk

) n∑

a=1

bak

}

where Z t
µk is a normalisation 
onstant. The diagonal elements qt0µk only a�e
t the normalisation

term and 
an therefore be taken to zero with no loss of generality.
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We expe
t the logarithm of the normalisation term Z t
µk (linked to the free energy), obtained

from the well behaved distribution P t
, to be self-averaging. We therefore expe
t

lim
n→∞

1

n
log
(
Z t

µk

)
= lim

n→∞

1

n
log
(
Z t

µk

(
ĥ, q̂1

))
,

where ĥ and q̂1 are the mean values of the parameters drawn for some suitable distributions and

the over-line represents the mean value of the partition fun
tion over these distributions.

In the following we will drop the upper-index t and the sub-indi
es µ and k for brevity. To obtain

the s
aling behaviour of the various parameters one 
al
ulates Z (h, q1) expli
itly, assuming the

parameter q1 is taken from a normal distribution N
(
q̂1, σ

2
q

)
. The partition fun
tion takes the

form :

Z (h, q1) =

∫ ∞

−∞

dx√
2πq1

exp

(
−(x− h)2

2q1
+ n ln (2 cosh(x))

)
. (A1)

Thus, the mean value of the partition fun
tion over the set of parameters is:

Z (h, q1) =

∫
Dq1 Z (h, q1) ,

where Dq1 = dq1 N
(
q̂1, σ

2
q1

)
. The normalisation 
an be expressed as:

Z (h, q1) =
n∑

a=0

(
n

a

)
exp

{
n

[
h

(
1− 2a

n

)
+

q̂1
2

(
1− 2a

n

)2

n +
σ2
q1

8

(
1− 2a

n

)4

n3

]}

= A(n) (n+ 1)

(
n

n/2

)
exp

{
n

[
|h|+ n

q̂1
2
+ n3

σ2
q1

8

]}

≃
√

2

π
A(n) exp

{
n

[
ln(2) + |h|+ n

q̂1
2
+ n3

σ2
q1

8

]}
,

where A(n) ∼ O(1). Thus, h ∼ O (1), q̂1 ∼ O (n−1) and σ2
q1

∼ O (n−3). >From now on we will

take the o�-diagonal elements of the RS matrix Qt
µk equal to gt1µk/n, where gt1µk ∼ O (1).

The form of the marginalised posterior at time t is then:

P t (bk| {yν 6=µ}) =

∫ ∞

−∞
dx exp

{
−n

(
x− ht

µk

)2

2gt1µk
+ x

n∑

a=1

bak

}

∫ ∞

−∞
dx exp

{
−nΦ

(
x; ht

µk, g
t
1µk

)} , (A2)
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Figure 7: Solutions for the mean �eld equation (A3) with two maxima and one minimum for a positive

value of the �eld h.

where

Φ
(
x; ht

µk, g
t
1µk

)
=

(
x− ht

µk

)2

2gt1µk
− ln (2 cosh(x)) .

The fun
tion Φ (x; h, g1) presents one or two minima a

ording to the following table:

h g1 Number of minima

h ∈ R 0 < g1 ≤ 1 one min.

|h| = hc g1 > 1 one min. and one hump

|h| < hc g1 > 1 two min.

where hc =
√
g1(g1 − 1)− cosh−1

(√
g1
)
; the 
oe�
ient g1 plays the role of the inverse tempera-

ture. Below the 
riti
al value g1c = 1 a spontaneous magnetisation appears.

This results from analysing the equation:

∂Φ (x; h, g1)

∂x
=

x− h

g1
− tanh(x) = 0. (A3)

The 
ase of two maxima is presented in �gure 7.
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We de�ne the mean values from the distribution equation (A2). If the �eld h is not zero, as

shown in �gure 7, [exp (−Φ)]n develops one dominant maximum as n → ∞. For large enough

n, only this maximum 
ontributes to the integrals (A2) and the algorithm obtained from this

assumption turns out to be the same as the one presented in [6℄. However, if the �eld is

su�
iently small it gives rise to a new regime where the two maxima 
ontribute. At the same

time, it is important to note that a small, non zero �eld favours the solution of Eq.(A3) that

satis�es sgn(x) = sgn(h). To analyse the behaviour of the �eld, we will explore the solutions of

Eq.(A3) in the regime 0 . |h| ≪ 1. With this aim, suppose that the solutions for the Eq.(A3) at

zero �eld are x0 = ±g1 |m| where m ≡ tanh (x0) and sgn(m) = sgn(h). If the �eld is su�
iently

small one 
an expand the solutions of equation (A3) as x±h = ±g1m+ ξ(m, g1)h where ξ(m, g1)h

is expe
ted to be small and satis�es sgn (ξ(m, g1)h) = sgn(h). Observe that if the �eld is positive

(negative), both roots are displa
ed to the right (left) with respe
t to the zero �eld solutions.

Using this expression for the roots in Eq.(A3) and disregarding terms of O (h2) one �nds that

ξ(m, g1) =
1

1− g1 (1−m2)
. (A4)

The expression for the exponent Φ near the roots and in the 0 . |h| ≪ 1 regime is then

Φ (x±h; h → 0, g1) ≃ Φ (x0; 0, g1)∓mh = Φ0 ∓mh , and, by the de�nition of the m, the produ
t

mh is positively de�ned.

Let us de�ne β±h (m, g1) ≡ (1−m2) [1∓ 2ξ (m, g1)mh]. We expe
t that, for large n the following

approximation to be valid:

exp {−nΦ (x; h → 0, g1)} ≃ e−nΦ0

{
enmh exp

{
−n

2

[
g−1
1 − βh (m, g1)

]
(x− xh)

2
}

+e−nmh exp
{
−n

2

[
g−1
1 − β−h (m, g1)

]
(x− x−h)

2
}}

. (A5)
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Using equation (A5) one 
an 
al
ulate the normalisation in equation (A1)

Z (h → 0, g1) ≃ e−n(Φ0−mh)

∫
dx exp

{
−n

2

[
g−1
1 − βh (m, g1)

]
(x− xh)

2
}

+e−n(Φ0+mh)

∫
dx exp

{
−n

2

[
g−1
1 − β−h (m, g1)

]
(x− x−h)

2
}

≃
√

2πg1ξ (m, g1)

n
e−nΦ0

{
enmh

(
1− g1

(
1−m2

)
ξ2 (m, g1) mh

)

+ e−nmh
(
1 + g1

(
1−m2

)
ξ2 (m, g1) mh

)}
. (A6)

The mean value of a given fun
tion f(x) with respe
t to the 
onditional probability distribution

de�ned in equation (A2) is then:

〈f(x)|h → 0, g1〉 ≃ Z−1e−n(Φ0−mh)

∫
dx exp

{
−n

2

[
g−1
1 −

(
1−m2

)
(1−2ξ (m, g1) mh)

]
(x−xh)

2
}

[
f (xh) + (x− xh) f

′ (xh) +
1

2
(x− xh)

2 f ′′ (xh)

]

+Z−1e−n(Φ0+mh)

∫
dx exp

{
−n

2

[
g−1
1 −

(
1−m2

)
(1+2ξ (m, g1) mh)

]
(x−x−h)

2
}

[
f (x−h) + (x− x−h) f

′ (x−h) +
1

2
(x− x−h)

2 f ′′ (x−h)

]
,

whi
h implies, 
onsidering that the integrals of the linear terms are zero and keeping only the

leading terms in the expansions, that the expe
tation values takes the form:

〈f(x)|h → 0, g1〉 ≃
[
1− e−2nmh

(
1 + 2ξ2 (m, g1) mh

)] {
f (xh) +

g1
2n

ξ (m, g1) f
′′ (xh)

}

+e−2nmh
(
1 + 2ξ2 (m, g1) mh

)
f (x−h) .

Considering the expansion of f (x±h) ≃ f (±g1m+ ξ (m, g1) h) ≃ f (±g1m) +

ξ (m, g1) f
′ (±g1m) h and disregarding terms of O

(
he−2nmh

)
, one 
an write:

〈f(x)|h→0, g1〉 ≃ f (mg1)+
g1
2n

ξ (m, g1) f
′′ (mg1)−e−2nmh[f (mg1)−f (−mg1)]+f

′ (mg1)ξ (m, g1) h.

(A7)
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The resulting one and two variable expe
tation values be
ome

〈
bak|ht

µk → 0, gtµk
〉
=
∑

{bk}
P t (bk| {yν 6=µ}) bak =

〈
tanh(x)|ht

µk → 0, gt1µk
〉

≃
[
1−

gt1µk
n

[
1−

(
mt

µk

)2]
ξ
(
mt

µk, g
t
1µk

)
− 2e−2nmt

µk
ht
µk

]
mt

µk

+ξ
(
mt

µk, g
t
1µk

) [
1−

(
mt

µk

)2]
ht
µk

and

〈
bakb

b

k|ht
µk → 0, gt1µk

〉
= P t (bk| {yν 6=µ}) bakbbk = δab +

(
1− δab

) 〈
tanh2(x)|ht

µk → 0, gt1µk
〉
,

where

〈
tanh2(x)|ht

µk → 0, gt1µk
〉
=
(
mt

µk

)2
+ξ
(
mt

µk, g
t
1µk

) [
1−

(
mt

µk

)2]
{
gt1µk
n

[
1− 3

(
mt

µk

)2]
+ 2mt

µkh
t
µk

}
,

and

〈
bakb

b

l |ht
µk → 0, gt1µk

〉
=
〈
bak|ht

µk → 0, gt1µk
〉 〈

bbl |ht
µk → 0, gt1µk

〉
.

Thus, the leading terms for the 
ovarian
e matrix of the repli
ated variables are:

(
Ψt

µkl

)ab ≡
〈
bakb

b

l |ht
µk → 0, gt1µk; h

t
µl → 0, gt1µl

〉
−
〈
bak|ht

µk → 0, gt1µk
〉 〈

bbl |ht
µl → 0, gt1µl

〉
= δkl

(
Ψt

µk

)ab
(
Ψt

µk

)ab ≃ δab
[
1−

(
mt

µk

)2]

+
(
1− δab

){gt1µk
n

ξ
(
mt

µk, g
t
1µk

) [
1−

(
mt

µk

)2]2
+ 4e−2nmt

µk
ht
µk

(
1− e−2nmt

µk
ht
µk

) (
mt

µk

)2
}

.

If one requires the non-diagonal elements of this 
ovarian
e matrix to have the same s
aling as

the inter-repli
a intera
tion matrix, the �eld has to behave in su
h a way that the exponential

term 
ontributes at most in O (n−1) . One thus expe
ts the �eld to obey mt
µkh

t
µk <

1

n
ln

∣∣∣∣∣
2n

nt
µk

∣∣∣∣∣,

where the nt
µk are appropriate 
onstants. With this asymptoti
 behaviour, the expression for the

entries in the 
ovarian
e matrix is

(
Ψt

µk

)ab ≃ δab
[
1−

(
mt

µk

)2]
+
(
1− δab

) gt1µkξ
(
mt

µk, g
t
1µk

)

n

[
1−

(
mt

µk

)2]2
,
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whi
h serves to de�ne the probability distribution for the ma
ros
opi
 variable ∆a
µk =

∑
l 6=k εµlb

a
l .

As εµk and bak are unbiased variables, the variable ∆a
µk, by virtue of the 
entral limit theorem,

obeys a normal distribution, with mean value and 
ovarian
e matrix given by (to highest order)

(
ut
µk

)a ≡
〈
∆a

µk

〉
=

∑

{bl 6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k

εµlb
a
l =

∑

l 6=k

εµlm
t
µl (A8)

(
Υt

µk

)ab ≡
〈
∆a

µk∆
b

µk

〉
−
〈
∆a

k

〉 〈
∆b

k

〉
=

∑

{bl 6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k
j 6=k

εµlεµjb
a
l b

b
j −

(
∑

l 6=k

εµlm
t
µl

)2

=
∑

l 6=k

ε2µl
(
Ψt

µlj

)ab
= δabXµk +

(
1− δab

) 1
n
Rt

µk,

where

X t
µk ≡

∑

l 6=k

ε2µl

[
1−

(
mt

µl

)2]
and (A9)

Rt
µk ≡

∑

l 6=k

ε2µl g
t
1µl ξ

(
mt

µl, g
t
1µl

) [
1−

(
mt

µl

)2]2
,

are ma
ros
opi
 variables of O(1). In parti
ular, Rt
µk is a free variable that 
an be used later on to

optimise a given performan
e measure. This variables have the property of being self-averaging,

therefore we 
an drop the sub-indi
es µ and k.

Appendix B: THE ONE STEP REPLICA SYMMETRY BREAKING (1RSB) ANSATZ

Under a solution 
orrelation matrix that resembles the 1RSB stru
ture, the system 
omprises

nL variables, where both the number of blo
ks L and the number of variables per blo
k n are


onsidered large. As before we are interested in the regime where L and n → ∞.

With this setting, the intera
tion term in equation (6) is now:

bT

kQ
t
µkbk = −qt1µknL+

(
qt1µk − qt2µk

) L∑

ℓ=1

(
n∑

a=1

bℓak

)2

+ qt2µk

(
L∑

ℓ=1

n∑

a=1

bℓak

)2

,
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thus we have now L+ 1 squared sums in the exponent that 
an be repla
ed by integrals:

P t (bk| {yν 6=µ}) = [Z t
µk]

−1

∫
dx exp

{
− x2

0

2qt2µk
−

L∑

ℓ=1

x2
ℓ

2∆qtµk
+

L∑

ℓ=1

(
x0 + xℓ + ht

µk

) n∑

a=1

bℓak

}
,

where ∆qtµk ≡ qt1µk − qt2µk > 0 and xT = (x0, x1, . . . , xL). Also here we expe
t the logarithm of

the normalisation term (linked to the free energy) obtained from the well behaved distribution

P t
to be self-averaging, thus:

lim
n→∞

lim
L→∞

1

nL
log
(
Z t

µk

)
= lim

n→∞
lim
L→∞

1

nL
log
(
Z t

µk

(
ht
µk, q

t
1µk, q

t
2µk

))
,

whi
h is satis�ed if the entries behave like qt2µk ∼ gt2µk/nL and ∆qtµk ∼ gt1µk/n, where gt1µk

and gt2µk ∼ O(1). Using this new s
aled parameters, the expression for the normalisation is

Z t
µk =

∫
dx exp

{
−nLΦ

(
x; ht

µk, g
t
1µk, g

t
2µk

)}
where

Φ
(
x; ht

µk, g
t
1µk, g

t
2µk

)
≡ x2

0

2gt1µk
+

1

L

L∑

ℓ=1

x2
ℓ

2gt2µk
− 1

L

L∑

ℓ=1

log
[
2 cosh

(
x0 + xℓ + ht

µk

)]
.

As before, we drop the indexes µ, k, and t for brevity. The 
riti
al points of the fun
tion

Φ (x; h, g1, g2) satisfy the following set of equations:

∂Φ

∂x0
=

x0

g1
− 1

L

L∑

ℓ=1

tanh (x0 + xℓ + h) = 0

∂Φ

∂xℓ
=

1

L

(
xℓ

g2
− tanh (x0 + xℓ + h)

)
= 0 ,

whi
h are satis�ed for the following values:

x∗
0 =

g1
g2

1

L

L∑

ℓ=1

x∗
ℓ =

g1
g2
x∗

x∗
ℓ

g2
= tanh

(
x∗
ℓ +

g1
g2
x∗ + h

)
, (B1)

where x∗ ≡ 1
L

∑L
ℓ=1 x

∗
ℓ . The se
ond equation in the set, equation (B1), has the same form for all

ℓ = 1, . . . , L and in the small �eld regime it has at most three di�erent solutions. From the three
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possible solutions, one is a lo
al maximum; of the other two, the one that has the same sign as

h is dominant. Thus we 
an expe
t, for all ℓ, x∗
ℓ = x∗

. This redu
es the set of L + 1 equations

to one

x∗

g2
= tanh

(
G

g2
x∗ + h

)
,

where G ≡ g1 + g2. With the substitution u = (G/g2)x
∗
the equation has the same form as

equation (A3), i.e. u = G tanh (u+ h) . If one 
onsiders again the �eld h to be small, the

solutions 
an be expressed as an expansion of the zero �eld solutions u±h ≃ ±Gm + ξ(m,G)h,

where ξ(m,G) is given by equation (A4), and sgn(m) = sgn(h). Using these expansions the


riti
al values are given by: x∗
0,±h ≃ g1 [±m+G−1ξ(m,G)h] and x∗

ℓ,±h ≃ g2 [±m+G−1ξ(m,G)h]

for all ℓ = 1, . . . , L.

As in the RS 
ase, the expansion of Φ around the 
riti
al points in the small �eld regime is

Φ
(
x∗
±h; h → 0, g1, g2

)
≃ Φ (x∗

0; 0, g1, g2) ∓ mh = Φ0 ∓ mh. So the dominant solution is the one

that shares the sign with the �eld.

For a su�
iently large system with nL variables, one expe
ts the following expansion to be valid:

exp {−nLΦ (x;h → 0, g1, g2)} ≃ e−nLΦ0

{
enLmh exp

[
−nL

2
(x− x

∗
h)

T
HΦ,h (x− x

∗
h)

]

+e−nLmh exp

[
−nL

2

(
x−x

∗
−h

)T
HΦ,−h

(
x−x

∗
−h

)]}
, (B2)

where HΦ,±h is the Hessian of Φ in x∗
±h.

De�ning β±h ≡ (1−m2) {1∓ 2 [ξ(m,G) + 1] mh}, the entries of the Hessian be
ome

∂2Φ

∂x2
0

∣∣∣∣
x∗
±h

≃ g−1
1 − β±h ≡ α±h

∂2Φ

∂x2
ℓ

∣∣∣∣
x∗
±h

≃ 1

L

(
g−1
2 − β±h

)
≡ 1

L
γ±h

∂2Φ

∂x0∂xℓ

∣∣∣∣
x∗
±h

≃ − 1

L
β±h

∂2Φ

∂xℓ∂xℓ′

∣∣∣∣
x∗
±h

= 0 .
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The 
orresponding 
hara
teristi
 equation is:

det (HΦ,±h − λ11) =

(
1

L
γ±h − λ

)L−1{
(α±h − λ)

(
1

L
γ±h − λ

)
− 1

L
β2
±h

}
= 0 .

The solutions for this equation, disregarding terms of O (L−2) and O (hL−1), are:

λ0,±h = α±h +
1

L

β2
±h

α±h

≃ λ0

{
1± 2 [ξ(m, g1)− 1] [ξ(m,G) + 1]

(
1−m2

)
mh
}

λ1,±h =
1

L

(
γ±h −

β2
±h

α±h

)
(B3)

≃ λ1

{
1± 2

ξ(m, g1)
2 [ξ(m, g2)− 1]

1− [ξ(m, g1)− 1] [ξ(m, g2)− 1]
[ξ(m,G) + 1]

(
1−m2

)
mh

}

λℓ,±h =
1

L
γ±h

≃ λℓ

{
1± 2 [ξ(m, g2)− 1] [ξ(m,G) + 1]

(
1−m2

)
mh
}

∀ ℓ = 2, . . . , L ,

where λ0 ≡ α0 +
1
L

β2
0

α0
, λ1 ≡ 1

L

(
γ0 − β2

0

α0

)
and λℓ ≡ 1

L
γ0. The 
orresponding eigenve
tors, up to

order L−1
, are:

u0,±h =


1,

L times︷ ︸︸ ︷
− 1

L

β±h

α±h
,− 1

L

β±h

α±h
, . . . ,− 1

L

β±h

α±h




T

u1,±h =
1√
L


β±h

α±h
,

L times︷ ︸︸ ︷
1, 1, . . . , 1




T

(B4)

uℓ,±h =
1√

ℓ (ℓ− 1)


0,

ℓ−1 times︷ ︸︸ ︷
1, 1, . . . , 1,− (ℓ− 1) ,

L−ℓ times︷ ︸︸ ︷
0, 0, . . . , 0




T

∀ ℓ = 2, . . . , L .

These ve
tors satisfy the normalisation 
ondition uT

ℓ,±huℓ′,±h = δℓℓ
′

[1 +O (L−1)] ∀ℓ, ℓ′ =

0, 1, . . . , L. The linear transformation from the 
anoni
al basis to the basis of eigenve
tors is
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then represented by a matrix with the entries

(U±h)ij ≃ (U0)ij = δ0iδ0j +
1√

j(j − 1)

[
j−1∑

k=1

δki − (1− δ0j) (1− δ1j) δij(j − 1)

]

+
1√
L
δ1j

[
δ0i

β0

α0
+ (1− δ0i)

]
− 1

L
δ0j (1− δ0i)

β0

α0
, (B5)

ignoring terms of O
(
hL−1/2

)
. Be
ause this transformation is a rigid rotation, the following

properties are satis�ed: |det (U±)| = 1 and UT

±hU±h = U±hU
T

±h = 11.

Se
ond order terms in equation (B2) 
an be re-written using the diagonal rep-

resentation of the Hessian. Therefore, keeping only terms of order O (L−1) we

have that: (x− x±h)
T
HΦ,±h (x− x±h) = (x− x±h)

T
U0U

T

0HΦ,±hU0U
T

0 (x− x±h) =

(y − y±h)
T
H′

Φ,±h (y − y±h), where y ≡ UT

0 x and H′
Φ,±h ≡ UT

0HΦ,±hU0 is the diagonal represen-

tation of the Hessian, i.e.

(
H′

Φ,±h

)
ij
= δijλi,±h. Using the diagonal representation in 
onjun
tion

with equation (B2) one obtains an expression for the normalisation term

Z (h → 0, g1, g2) ≃ e−nL(Φ0−mh)

∫
dy exp

[
−nL

2
(y − y∗

h)
T
H′

Φ,h (y − y∗
h)

]

+e−nL(Φ0+mh)

∫
dy exp

[
−nL

2

(
y− y∗

−h

)
T

H′
Φ,−h

(
y − y∗

−h

)]

≃ e−nLΦ0

(
2π

nL

)L+1

2

[
enLmh

L∏

ℓ=0

λ
− 1

2

ℓ,h + e−nLmh
L∏

ℓ=0

λ
− 1

2

ℓ,−h

]
.

For a small �eld, the produ
t of the eigenvalues 
an be approximated by

L∏

ℓ=0

λ
− 1

2

ℓ,±h ≃ {1∓ [ξ(m, g2)− 1] [ξ(m,G) + 1]Lmh}
L∏

ℓ=0

λ
− 1

2

ℓ .

Thus, the expression for Z redu
es to

Z (h → 0, g1, g2) ≃ e−nLΦ0

(
2π

nL

)L+1

2
L∏

ℓ=0

λ
− 1

2

ℓ

{
enLmh {1− [ξ(m, g2)− 1] [ξ(m,G) + 1]Lmh}

+ e−nLmh {1 + [ξ(m, g2)− 1] [ξ(m,G) + 1]Lmh}
}
.
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The mean value of a given fun
tion f(x) is then given by

〈f(x)|h → 0, g1, g2〉 ≃ Z−1e−nL(Φ0−mh)

∫
dy exp

{
−nL

2
(y − y∗

h)
T
H′

Φ,h (y − y∗
h)

}

[
f (xh) +

1

2
(y − y∗

h)
T
H′

f,h (y − y∗
h)

]

+Z−1e−nL(Φ0+mh)

∫
dy exp

{
−nL

2

(
y − y∗

−h

)T
H′

Φ,−h

(
y− y∗

−h

)}

[
f (x−h) +

1

2

(
y − y∗

−h

)
T

H′
f,−h

(
y − y∗

−h

)]
,

where H′
f,±h is the Hessian of the fun
tion f in the basis of eigenve
tors of HΦ±h, evaluated at the


riti
al points. The linear terms in the expansion of f (x) do not 
ontribute to the expe
tation

value. The Gaussian integral of the 
ross produ
ts of the type

(
yi − y∗i,±h

) (
yj − y∗j,±h

)
with i 6= j

are zero, thus the Gaussian integral of the se
ond term in the expansion of f (x) be
omes:

I± =
1

2
Z−1e−nL(Φ0∓mh)

∫
dy exp

[
−nL

2

(
y − y∗

±h

)
T

H′
Φ,±h

(
y − y∗

±h

)] (
y − y∗

±h

)
T

H′
f,±h

(
y − y∗

±h

)

I+ ≃ 1

2

{
1− e−2nLmh {1 + 2 [ξ(m, g2)− 1] [ξ(m,G) + 1]Lmh}

} 1

nL

L∑

ℓ=0

λ−1
ℓ,h

(
H′

f,h

)
ℓℓ

I− ≃ 1

2
e−2nLmh {1 + 2 [ξ(m, g2)− 1] [ξ(m,G) + 1]Lmh} 1

nL

L∑

ℓ=0

λ−1
ℓ,−h

(
H′

f,−h

)
ℓℓ
. (B6)

Using the expansion f (x±) ≃ f (±x0 + h ξ(m,G)) ≃ f (±x0)+h ξT(m,G)∇f (±x0) = f (±x0)+

δf (±x0) h where xT

0 = m

(
g1,

L times︷ ︸︸ ︷
g2, g2, . . . , g2

)
and ξT(m,G) = G−1ξ(m,G)

(
g1,

L times︷ ︸︸ ︷
g2, g2, . . . , g2

)
,

37



the diagonal entries of the transformed Hessian are:

(
H′

f,±h

)
ℓℓ

=
L∑

i,j=0

(U±h)ℓi (U±h)ℓj (Hf,±h)ij

=

L∑

i,j=0

(U±h)ℓi (U±h)ℓj
∂2f

∂xi∂xj

∣∣∣∣
x±

≃
L∑

i,j=0

(U0)ℓi (U0)ℓj

(
∂2f

∂xi∂xj

∣∣∣∣
±x0

+ h ξT(m,G)∇ ∂2f

∂xi∂xj

∣∣∣∣
±x0

)
(B7)

≃
(
H′

f

∣∣
±x0

)
ℓℓ
+
(
δH′

f

∣∣
±x0

)
ℓℓ
h ,

with

(
δH′

f

∣∣
±x0

)
ℓℓ
de�ned by the se
ond term in (B7). Using the entries of the diagonalised

Hessian, the last term in the integrals (B6) be
omes

1

nL

L∑

ℓ=0

λ−1
ℓ,−h

(
H′

f,±h

)
ℓℓ

≃ 1

nL

1

α0

(
H′

f

∣∣
±x0

)
00
+

1

n

α0

(α0γ0 − β2
0)

(
H′

f

∣∣
±x0

)
11
+

1

n

1

γ0

L∑

ℓ=2

(
H′

f

∣∣
±x0

)
ℓℓ
,

disregarding terms of O
(
h
n
+ h

L

)
. The expe
tation value of an arbitrary fun
tion f 
an then be

approximated by

〈
f(x)|h→0+, g1, g2

〉
≃ f (x0)+

1

2

1

nL

L∑

ℓ=0

λ−1
ℓ

(
H′

f

∣∣
x0

)
ℓℓ
−e−2nLmh[f (x0)−f (−x0)]+δf(x0)h,(B8)

where we have disregarded terms of O
(
h
n
+ h

L

)
,O
(
1
n
e−2nLmh

)
and O

(
Lhe−2nLmh

)
. By simple

inspe
tion, equation (B8) is equivalent to the RS mean value equation (A7).

The single variable mean value is then:

〈
bℓak |ht

µk → 0, gt1µk, g
t
2µk

〉
=
∑

{bk}
P t (bk| {yν 6=µ}) bℓak =

〈
tanh

(
x0 + xℓ + ht

µk

)
|ht

µk → 0, gt1µk, g
t
2µk

〉
.

The expansion for f(x) = tanh
(
x0 + xℓ + ht

µk

)
is

f(x) ≃ mt
µk +

[
1−

(
mt

µk

)2]

1,

ℓ−1 times︷ ︸︸ ︷
0, 0, . . . , 0, 1,

L−ℓ times︷ ︸︸ ︷
0, 0, . . . , 0




T

ξ
(
mt

µk, G
t
µk

)
ht
µk ,
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whi
h results in the following expression for the single variable mean value

〈
bℓak |ht

µk → 0, gt1µk, g
t
2µk

〉
≃
(
1− 2e−2nLmt

µk
ht
µk

)
mt

µk + ξ
(
mt

µk, G
t
µk

) [
1−

(
mt

µk

)2]
ht
µk

−mt
µk

[
1−

(
mt

µk

)2] 1

nL

L∑

k=0

λ−1
k (M′

0ℓ)kk ,

where (M0ℓ)ij = δ0iδ0j + δ0iδℓj + δℓiδ0j + δℓiδℓj is a matrix su
h that Htanh(x0+xℓ)

∣∣
x0

=

−2mt
µk

[
1−

(
mt

µk

)2]
M0ℓ. In the basis of the HΦ eigenvalues, the expressions for the diagonal

elements of this matrix are

(M′
0ℓ)kk =

L∑

i,j=0

(U±h)ik (U±h)jk (δ0iδ0j + δ0iδℓj + δℓiδ0j + δℓiδℓj)

= ((U±h)0k + (U±h)ℓk)
2

(M′
0ℓ)00 ≃ 1− 2

L

β0

α0

(B9)

(M′
0ℓ)11 ≃ 1

L

(
α0 + β0

α0

)2

(M′
0ℓ)kk = δkℓ

ℓ− 1

ℓ
+Θ (k − ℓ− 1)

1

k (k − 1)
∀ ℓ = 2, . . . , L ,

where Θ(n) = 1 if n > 0 and 0 otherwise. The sum of the eigenvalues' inverse times the diagonal

elements equation (B9) results in

1

nL

L∑

k=0

λ−1
k (M′

0ℓ)kk ≃ 1

n

1

γ0

L∑

k=2

[
δkℓ

ℓ− 1

ℓ
+Θ (k − ℓ− 1)

1

k (k − 1)

]
+

1

nL

1

α0

[
1 +

(α0 + β0)
2

α0γ0 − β2
0

]

=
1

n

1

γ0

[
L∑

k=2

1

k (k − 1)

]
+

1

nL

1

α0

[
1 +

(α0 + β0)
2

α0γ − β2
0

]

=
1

n

1

γ0
+

1

nL

1

α0

[
1 +

(α0 + β0)
2

α0γ0 − β2
0

− α0

γ0

]

=
1

n
gt2µkξ

(
mt

µk, g
t
2µk

)
+

1

nL

[
Gt

µkξ
(
mt

µk, G
t
µk

)
− gt2µkξ

(
mt

µk, g
t
2µk

)]

where we have used that

∑L
k=2 [k (k − 1)]−1 = (L − 1)/L, γ−1

0 = gt2µkξ
(
mt

µk, g
t
2µk

)
and

1

α0

[
1 +

(α0 + β0)
2

α0γ0 − β2
0

− α0

γ0

]
= Gt

µkξ
(
mt

µk, G
t
µk

)
− gt2µkξ

(
mt

µk, g
t
2µk

)
. The �nal expression for the
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expe
tation value of a single variable is

〈
bℓak |ht

µk → 0, gt1µk, g
t
2µk

〉
≃
(
1− 2e−2nmt

µk
ht
µk

)
mt

µk −
gt2µkξ

(
mt

µk, g
t
2µk

)

n

[
1−

(
mt

µk

)2]
mt

µk

−
Gt

µkξ
(
mt

µk, G
t
µk

)
− gt2µkξ

(
mt

µk, g
t
2µk

)

nL

[
1−

(
mt

µk

)2]
mt

µk

+ξ
(
mt

µk, G
t
µk

) [
1−

(
mt

µk

)2]
ht
µk . (B10)

To 
al
ulate

〈
bℓak b

ℓa′

k |ht
µk → 0, gtµk, ∆gtµk

〉
, an o�-diagonal element (a 6= a

′
) in the same blo
k ℓ,

we 
an apply the equation (B8) with f(x) = tanh2
(
x0 + xℓ + ht

µk

)
, thus the Hessian matrix is

Htanh2(x0+xℓ)

∣∣
x0

= 2
[
1−

(
mt

µk

)2] [
1− 3

(
mt

µk

)2]
M0ℓ, thus:

〈
bℓak b

ℓa′

k |ht
µk → 0, gt1µk, g

t
2µk

〉
≃
(
mt

µk

)2
+

gt2µkξ
(
mt

µk, g
t
2µk

)

n

[
1−

(
mt

µk

)2] [
1− 3

(
mt

µk

)2]

+
Gt

µkξ
(
mt

µk, G
t
µk

)
− gt2µkξ

(
mt

µk, g
t
2µk

)

nL

[
1−

(
mt

µk

)2] [
1− 3

(
mt

µk

)2]

+2ξ
(
mt

µk, G
t
µk

) [
1−

(
mt

µk

)2]
mt

µkh
t
µk. (B11)

Finally, to 
al
ulate the expe
tation value for the produ
t of two variables belonging to di�erent

blo
ks ℓ 6= ℓ′ (the sub-blo
k index a is insigni�
ant in this 
ase),

〈
bℓak b

ℓ′a
k |ht

µk → 0, gt1µk, g
t
2µk

〉
. We

set f(x) = tanh
(
x0 + xℓ + ht

µk

)
tanh

(
x0 + xℓ′ + ht

µk

)
, thus the Hessian matrix

(
Htanh(x0+xℓ) tanh(x0+xℓ′)

∣∣
x0

)
ij

= M0

(
mt

µk

)
(2δi0δj0 + δi0δjℓ + δiℓδj0 + δi0δjℓ′ + δiℓ′δj0)

+M1

(
mt

µk

)
(δiℓδjℓ′ + δiℓ′δjℓ)− 2M2

(
mt

µk

)
(δiℓδjℓ + δiℓ′δjℓ′) ,

where M0

(
mt

µk

)
≡
[
1−

(
mt

µk

)2] [
1− 3

(
mt

µk

)2]
, M1

(
mt

µk

)
≡
[
1−

(
mt

µk

)2]2
and M2

(
mt

µk

)
≡

(
mt

µk

)2 [
1−

(
mt

µk

)2]
. The diagonal elements Kℓℓ′;k ≡

(
H′

tanh(x0+xℓ) tanh(x0+xℓ′)

∣∣∣
x0

)

kk

in the basis
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of eigenve
tors of HΦ are

Kℓℓ′;0 ≃ 2M0

(
mt

µk

)

Kℓℓ′;1 ≃
2M0

(
mt

µk

)

L

[
β0

α0

(
β0 + 2α0

α0

)
+ 1

]

Kℓℓ′;j = −2δjℓM2

(
mt

µk

) ℓ− 1

ℓ
− 2 [Θ (j − ℓ)Θ (ℓ′ − j)]

M2

(
mt

µk

)

j(j − 1)

−2δjℓ′

[
M1

(
mt

µk

)

ℓ′
+

M2

(
mt

µk

)

ℓ′

(
ℓ′ − 1 +

1

ℓ′ − 1

)]
+ 2Θ (j − ℓ′)

M0

(
mt

µk

)

j(j − 1)
,

thus, the sum of the diagonal elements is:

1

2

1

nL

L∑

k=0

λ−1
k,−±hKℓℓ′;k ≃ 1

nL

M0

(
mt

µk

)

α0

[
1+

(β0 + α0)
2

(α0γ0 − β2
0)

]
− 1

n

1

γ0

{
M2

(
mt

µk

)
[
ℓ− 1

ℓ
+

ℓ′−1∑

j=ℓ+1

1

j(j − 1)

]

+
M1

(
mt

µk

)

ℓ′
+

M2

(
mt

µk

)

ℓ′

(
ℓ′ − 1 +

1

ℓ′ − 1

)
−M0

(
mt

µk

) L∑

j=ℓ′+1

1

j(j − 1)

}

= −
gt2µkξ

(
mt

µk, g
t
2µk

)

n

[
M1

(
mt

µk

)
−M0

(
mt

µk

)]

+
Gt

µkξ
(
mt

µk, G
t
µk

)
− gt2µkξ

(
mt

µk, g
t
2µk

)

nL
M0

(
mt

µk

)
.

Using the sum of diagonal terms one then derives the expe
ted 
orrelation for variables belonging

to two di�erent blo
ks

〈
bℓak b

ℓ′a
k |ht

µk → 0, gtµk, ∆gtµk

〉
≃
(
mt

µk

)2 − 2
gt2µkξ

(
mt

µk, g
t
2µk

)

n

(
mt

µk

)2 [
1−

(
mt

µk

)2]

+
Gt

µkξ
(
mt

µk, G
t
µk

)
− gt2µkξ

(
mt

µk, g
t
2µk

)

nL

[
1− 3

(
mt

µk

)2] [
1−

(
mt

µk

)2]

+2ξ
(
mt

µk, G
t
µk

) [
1−

(
mt

µk

)2]
mt

µkh
t
µk . (B12)

Keeping in mind that

〈
bℓak b

ℓa
k |ht

µk, g
t
1µk, g

t
2µk

〉
= 1 and using equations (B10)-(B12), the 
ovarian
e
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matrix entries 
an be then 
al
ulated:

(
Ψt

µkl

)ℓa ℓ′a′
=
〈
bℓak b

ℓ′a′

l |ht
µk → 0, gt1µk, g

t
2µk; h

t
µl → 0, gt1µl, g

t
2µl

〉

−
〈
bℓ ak |ht

µk → 0, gt1µk, g
t
2µk

〉〈
bℓ

′
a

′

l |ht
µl → 0, gt1µl, g

t
2µl

〉
= δkl

(
Ψt

µkk

)ℓa ℓ′a′

(
Ψt

µkk

)ℓa ℓ′a′ ≃ δℓℓ
′

δaa
′
[
1−

(
mt

µk

)2]
+ δℓℓ

′
(
1− δaa

′
) gt2µkξ

(
mt

µk, g
t
2µk

)

n

[
1−

(
mt

µk

)2]2

+
(
1− δℓℓ

′
) Gt

µkξ
(
mt

µk, G
t
µk

)
− gt2µkξ

(
mt

µk, g
t
2µk

)

nL

[
1−

(
mt

µk

)2]2
,

where we have kept only the dominant terms at ea
h entry, disregarding terms of order

O
(
e−2nmt

µk
ht
µk + h

n
+ h

L

)
.

If the εµk and bak are unbiased variables, the variable ∆a
µk =

∑
l 6=k εµlb

a
l , by virtue of the 
entral

limit theorem, obeys a normal distribution, with mean value and 
ovarian
e matrix that 
an be

obtained by employing the expressions derived for Ψ

(
ut
µk

)ℓa ≡
〈
∆ℓa

µk

〉
=
∑

{bl 6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k

εµlb
ℓa
l =

∑

l 6=k

εµlm
t
µl (B13)

(
Υt

µk

)ℓa ℓ′a′ ≡
〈
∆ℓa

µk∆
ℓ′a′

µk

〉
−
〈
∆ℓa

µk

〉〈
∆ℓ′a′

µk

〉

=
∑

{bl 6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k
j 6=k

εµlεµjb
ℓa
l b

ℓ′a′

j −
(
∑

l 6=k

εµlm
t
µl

)2

=
∑

l 6=k

ε2µl
(
Ψt

µlj

)ℓa ℓ′a′
= δℓℓ

′

δaa
′

X t
µk + δℓℓ

′
(
1− δaa

′
) 1

n
Rt

µk +
(
1− δℓℓ

′
) 1

nL

(
V t
µk −Rt

µk

)
,

where X t
µk is given by equations (A9) and

Rt
µk ≡

∑

l 6=k

ε2µlg
t
2µlξ

(
mt

µl, g
t
2µl

) [
1−

(
mt

µl

)2]2

V t
µk ≡

∑

l 6=k

ε2µlG
t
µlξ
(
mt

µl, G
t
µl

) [
1−

(
mt

µl

)2]2

are ma
ros
opi
 variables of O(1). In parti
ular, Rt
µk and V t

µk are free variables that 
an be used

to optimise a given performan
e measure.
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Appendix C: THE MESSAGES

From the 
onditional probabilities of equations (3) and (4) and with the appli
ation of the

probability distributions P (∆µk|B) of equation (8) in (5) we 
an express the message from

nodes yµ to nodes bak at time t + 1 as:

m̂t+1
µk =

∑

{B}
ba

′

k

n∏

a=1

P (yµ|ba)P (ba)
∏

l 6=k

P (bl| {yν 6=µ})

∑

{B}

n∏

a=1

P (yµ|ba)P (ba)
∏

l 6=k

P (bl| {yν 6=µ})
(C1)

=

∫
d∆µkP (∆µk|B)

∑

{bk}
ba

′

k P (yµ|∆µk;γ)
[
1 + εµkb

T

k∇∆µk
lnP (yµ|∆µk;γ)

]

∫
d∆µkP (∆µk|B)

∑

{bk}
P (yµ|∆µk;γ)

[
1 + εµkb

T

k∇∆µk
lnP (yµ|∆µk;γ)

] .

If P (yµ|∆µk;γ) =
∏n

a=1 P
(
yµ|∆a

µk;γ
)
, and ignoring O(ε2µk) terms, the tra
es on bk 
an be

written as

∑

{bk}
P (yµ|∆µk;γ)

[
1 + εµkb

T

k∇∆µk
lnP (yµ|∆µk;γ)

]
= 2nP (yµ|∆µk;γ)

∑

{bk}
ba

′

k P (yµ|∆µk;γ)
[
1 + εµkb

T

k∇∆µk
lnP (yµ|∆µk;γ)

]
= 2nεµkP (yµ|∆µk;γ)

∂

∂∆a′
µk

lnP
(
yµ|∆ã

µk;γ
)
,
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thus, following from (C1) and negle
ting O(1/n) terms

(RS)m̂t+1
µk ≃ εµk

∫
d∆µkP (∆µk|B)

n∏

a=1

P
(
yµ|∆a

µk;γ
) ∂

∂∆a′
µk

lnP
(
yµ|∆a′

µk;γ
)

∫
d∆µkP (∆µk|B)

n∏

a=1

P
(
yµ|∆a

µk;γ
) (C2)

=
εµk

(RS)N t
µk

∫
dϑ exp

{
−n

(
ϑ− ut

µk

)2

2Rt

}

×
[∫

d∆ exp

{
−(∆− ϑ)2

2X t
+ lnP (yµ|∆;γ)

}]n−1

×
∫

d∆ exp

{
−(∆− ϑ)2

2X t

}
∂

∂∆
P (yµ|∆;γ) ,

and

(1RSB)m̂t+1
µk ≃ εµk

∫
d∆µkP (∆µk|B)

L∏

ℓ=1

n∏

a=1

P
(
yµ|∆ℓa

µk;γ
) ∂

∂∆ℓ′a′
µk

lnP
(
yµ|∆ℓ′a′

µk ;γ
)

∫
d∆µkP (∆µk|B)

n∏

a=1

P
(
yµ|∆a

µk;γ
)

=
εµk

(1RSB)N t
µk

∫
dΘ

L∏

ℓ=1

exp

{
−n

2

[
(ϑ0)

2

V t −Rt
+

(
ϑℓ
)2

V t − L−1 (V t −Rt)

]}

×
∏

ℓ 6=ℓ′

[∫
d∆ exp

{
−
(
∆− ϑ0ℓt

µk

)2

2X t
+ lnP (yµ|∆;γ)

}]n

×
[∫

d∆ exp

{
−
(
∆− ϑ0ℓ′t

µk

)2

2X t
+ lnP (yµ|∆;γ)

}]n−1

×
∫

d∆ exp

{
−
(
∆− ϑ0ℓ′t

µk

)2

2X t

}
∂

∂∆
P (yµ|∆;γ) ,
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where

(RS)N t
µk and

(1RSB)N t
µk are suitable normalisation 
onstants and ϑ0ℓt

µk ≡ ϑ0 +ϑℓ + ut
µk. One


an then de�ne:

G (yµ, ϑ) ≡
∫

d∆ exp

{
−(∆− ϑ)2

2X t

}
P (yµ|∆;γ) (C3)

P (yµ, ϑ) ≡ [G (yµ, ϑ)]
−1

∫
d∆ exp

{
−(∆− ϑ)2

2X t

}
∂

∂∆
P (yµ|∆;γ)

= [G (yµ, ϑ)]
−1

∫
d∆ exp

{
−(∆− ϑ)2

2X t

}
∆− ϑ

X t
P (yµ|∆;γ)

=
∂

∂ϑ
lnG (yµ, ϑ) (C4)

(RS)H (ϑ, yµ) ≡
(
ϑ− ut

µk

)2

2Rt
µk

− lnG (yµ, ϑ) (C5)

(1RSB)H
(
ϑ0, ϑℓ, yµ

)
≡ 1

2

[
(ϑ0)

2

V t − Rt
+

(
ϑℓ
)2

V t − L−1 (V t − Rt)

]
− lnG

(
yµ,ϑ

0ℓt
µk

)
. (C6)

Thus the expression for the RS message is:

(RS)m̂t+1
µk = εµk

∫
dϑ exp

{
−n(RS)H (ϑ, yµ)

}
P (yµ,ϑ)

∫
dϑ exp

{
−n(RS)H (ϑ, yµ)

} .

In the large n limit, only the solutions ϑ̃t
µk of

∂

∂ϑ
(RS)H = 0, that 
orrespond to the minimum

of H 
ontribute to the integral. The dominant term in the integral is obtained via saddle point

methods, whi
h leads to the �nal expression for the message

(RS)m̂t+1
µk = εµk

ϑ̃t
µk − ut

µk

Rt
, (C7)

where ϑ̃t
µk is given by equation (D1).

The 1RSB 
ase is a little more deli
ate. The exponential is a sum over L

fun
tions

(1RSB)H
(
ϑ0, ϑℓ, yµ

)
. Therefore, a Taylor expansion 
lose to the saddle point of equa-
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tion (D2) is employed resulting in

L∑

ℓ=1

(1RSB)H
(
ϑ0, ϑℓ, yµ

)
≃ LE0 +

L

2
h0

(
∆ϑ0

)2
+ h1∆ϑ0

L∑

ℓ=1

∆ϑℓ +
1

2
h2

L∑

ℓ=1

(
∆ϑℓ

)2
+O

(
∆ϑ3

)
,

where E0 =
(1RSB)H

(
ϑ̃0t
µk, ϑ̃

ℓt
µk, yµ

)
is the energy of the ground state, ∆ϑi = ϑi − ϑ̃it

µk i = 0, ℓ and

the entries h0, h1 and h2 satisfy the equation


 h0 h1

h1 h2


 =


 (V t − Rt)

−1
0

0 (V t)
−1


− ∂P

∂ϑ

∣∣∣∣
ϑ=ϑ̃t

µk


 1 1

1 1


 ,

where ϑ̃0ℓt
µk is the solution of equation (D2). If ΘT =

(
ϑ0, ϑ1, . . . , ϑL

)
and

(HH)ij = δjk [δj0h0 + (1− δj0)L
−1h2] + (δj0 + δk0) (1− δjk)L

−1h1 is the Hessian of

∑L
ℓ=1

(1RSB)H
(
ϑ0, ϑℓ, yµ

)
, then

L∑

ℓ=1

(1RSB)H
(
ϑ0, ϑℓ, yµ

)
≃ LE0 +

L

2
∆ΘTHH∆Θ .

The matrix HH has the same stru
ture as HΦ, therefore, the eigenvalues and eigenve
tors of

HH 
an be obtained adapting equations (B3) and (B4) by the substitutions α0 = h0, −β0 = h1

and γ0 = h2. Expanding P (ϑ, yµ) at the saddle point ϑ̃0ℓt
µk one obtains P

(
ϑ0ℓ′t
µk , yµ

)
≃ P0 +

P1

(
∆ϑ0 +∆ϑℓ′

)
+ 1

2
P2

(
∆ϑ0 +∆ϑℓ′

)2
where Pj ≡

∂jP
∂ϑj

∣∣∣∣
ϑ=ϑ̃t

µk

. The resulting messages are

(1RSB)m̂t+1
µk = εµk

∫
dΘ exp

{
−nL

2
∆ΘTHH∆Θ

}[
P0 + P1

(
∆ϑ0 +∆ϑℓ′

)
+

1

2
P2

(
∆ϑ0 +∆ϑℓ′

)2]

∫
dΩ exp

{
−nL

2
∆ΘTHH∆Θ

}

where the term proportional to P1 vanishes for parity reasons. In the basis of eigenve
tors of

HH, i.e. Γ = UTΘ = (γ0, γ1, . . . , γL)
T
where U is adapted from equation (B5), the message has

the form:

(1RSB)m̂t+1
µk ≃ εµk

∫
dΓ exp

{
−nL

2

L∑

ℓ=0

λℓ

(
∆γℓ

)2
}
(
P0 +

1
2
P2∆ΓTM′

0ℓ′∆Γ
)

∫
dΓ exp

{
−nL

2

L∑

ℓ=0

λℓ

(
∆γℓ

)2
} ,
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where λℓ are the eigenvalues of HH and M′
0ℓ′ is adapted from equation (B9).

The expression for the message is redu
ed to

(1RSB)m̂t+1
µk ≃ εµk

[
P0 +

1

n

P2

2h2
+O

(
1

nL

)]

≃ εµk
ϑ̃t
µk − ut

µk

2V t − Rt
+

εµk
2n

P2V
t

1− P1V t
. (C8)

The expression for the messages from b-nodes to y-nodes is:

mt
µk =

∑

{bk}
ba

′

k P
t (bk| {yν 6=µ})

=

∑

{bk}
ba

′

k

∏

ν 6=µ

∑

{bl 6=k}
P (yν |B)

∏

l 6=k

P t−1 (bl| {yσ 6=ν})

∑

{bk}

∏

ν 6=µ

∑

{bl 6=k}
P (yν |B)

∏

l 6=k

P t−1 (bl| {yσ 6=ν})
,

whi
h 
an be approximated by

mt
µk ≃

∑

{bk}
ba

′

k

∫
d∆νkP (yν |∆νk;γ)P (∆νk|B)

[
1 + ενkb

T

k∇∆νk
lnP (yν|∆νk;γ)

]

∑

{bk}

∫
d∆νkP (yν |∆νk;γ)P (∆νk|B)

[
1 + ενkb

T

k∇∆νk
lnP (yν |∆νk;γ)

]

=

∑

ba
′

k
=±1

ba
′

k

∫
d∆νkP (yν |∆νk;γ)P

(
∆νk|ba′k

)
[
1 + ενkb

a′

k

∂

∂∆a′
µk

lnP (yν |∆νk;γ)

]

∑

ba
′

k
=±1

∫
d∆νkP (yν |∆νk;γ)P

(
∆νk|ba′k

)
[
1 + ενkba

′

k

∂

∂∆a′
µk

lnP (yν |∆νk;γ)

]

=

∑

ba
k
=±1

bak
∏

ν 6=µ

1 + m̂t
νkb

a
k

N t
νk

∑

ba
k
=±1

∏

ν 6=µ

1 + m̂t
νkb

a
k

N t
νk

=

∏

ν 6=µ

1 + m̂t
νk

N t
νk

−
∏

ν 6=µ

1− m̂t
νk

N t
νk

∏

ν 6=µ

1 + m̂t
νk

N t
νk

+
∏

ν 6=µ

1− m̂t
νk

N t
νk

= tanh

(
∑

ν 6=µ

arctanh
(
m̂t

νk

)
)

,

but sin
e m̂t
νk ∼ O (ενk) we have that

mt
µk ≃ tanh

(
∑

ν 6=µ

m̂t
νk

)
. (C9)
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Appendix D: THE SADDLE POINT OF H

For the RS 
ase the equation to be solved is:

∂

∂ϑ
(RS)H (ϑ, yµ) =

ϑ− ut
µk

Rt
µk

− ∂

∂ϑ
lnG (ϑ, yµ)

=
ϑ− ut

µk

Rt
µk

− P (ϑ, yµ) ,

thus, the equation to be satis�ed is:

ϑ̃t
µk = ut

µk +RtP
(
ϑ̃t
µk, yµ

)
. (D1)

For the 1RSB 
ase we have that

∂

∂ϑ0
(1RSB)H =

∂

∂ϑℓ
(1RSB)H = 0 , resulting in the set of equations:

0 = ϑ̃0t
µk −

(
V t − Rt

)
P
(
ϑ̃0ℓt
µk , yµ

)

0 = ϑ̃ℓt
µk − V tP

(
ϑ̃0ℓt
µk , yµ

)
,

whi
h is equivalent to:

ϑ̃0ℓt
µk = ut

µk +
(
2V t − Rt

)
P
(
ϑ̃0ℓt
µk , yµ

)
, (D2)

where ϑ0ℓt
µk = ϑ0+ϑℓ+ut

µk. Observed that equation (D2) is equivalent to equation (D1) and that

the ground state ϑ̃t
µk is independent of the indi
es 0 and ℓ.

Appendix E: THE OPTIMISATION CONDITION

Our goal is to devise an algorithm that returns a better estimate of the message at ea
h iteration;

we therefore apply a variational approa
h that optimises the free parameters of the model at ea
h

iteration. We expe
t to �nd a suitable set of parameters γc
that maximises the drop in error per

bit rate.
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The error fun
tion has the form

E
t (γ) ≡ λ2P t

b −M t/
√
N t , (E1)

where λ2
is a positive 
onstant.

Observe that

M t −N t =
1√
2πF t

∫
dz exp

[
−z2 + (Et)

2

2F t
− ln cosh(z)

]
tanh(z) sinh

(
Et − F t

F t
z

)
,

and that sgn

[
tanh(z) sinh

(
Et − F t

F t
z

)]
= sgn (Et − F t) ∀z. Therefore sgn (Et − F t) =

sgn (M t −N t).

The se
ond term of the right hand side of equation (E1) is an impli
it fun
tion of the parameters

γ through Et
and F t

, therefore

∂

∂γi

(
M t

√
N t

)
=

∂

∂Et

(
M t

√
N t

)
∂Et

∂γi
+

∂

∂F t

(
M t

√
N t

)
∂F t

∂γi
, (E2)

where the partial derivatives with respe
t to Et
and F t

are

∂

∂Et

(
M t

√
N t

)
=
(
N t
)− 3

2

∫
Dz
[
1− tanh2

(√
F tz + Et

)] [
N t −M t tanh

(√
F tz + Et

)]

∂

∂F t

(
M t

√
N t

)
=
(
N t
)− 3

2

∫
Dz

z

2
√
F t

[
1− tanh2

(√
F tz + Et

)] [
N t −M t tanh

(√
F tz + Et

)]
.

By the de�nition of the �eld bkh
t
µk we have that sgn

(
bkh

t
µk

)
= sgn

(
bkm

t
µk

)
= sgn (bkm

t
k). Ex-

ploiting Gaussian properties of the distribution of ht
µk (9)

P t
b ≃ 1

2K

K∑

k=1

(
1− sgn

(
bkh

t
µk

))

∼
∫ ∞

−∞

du√
2πF t

exp

{
−(u−Et)

2

2F t

}
1

2
(1− sgn(u))

=

∫ −Et/
√
F t

−∞
Du ,
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and we suppose that Et
and F t

are both expli
it fun
tions of the parameters γ, therefore

∂P t
b

∂γi
= − 1√

2πF t
exp

[
−(Et)

2

2F t

]{
∂Et

∂γi
− 1

2

Et

F t

∂F t

∂γi

}
.

By di�erentiation equation (E1) and using equation (E2) one obtains

∂

∂γi
E

t = − λ2

√
2πF t

exp

[
−
(
Et
)2

2F t

](
∂Et

∂γi
− 1

2

Et

F t

∂F t

∂γi

)

−
(
N t
)− 3

2

∫
Dz

N t −M t tanh
(√

F tz + Et
)

cosh2
(√

F tz + Et
)

(
∂Et

∂γi
+

z

2
√
F t

∂F t

∂γi

)

= −
(
F tN t

)− 3

2

∫
du√
2π

exp

[
−
(
u− Et

)2

2F t

]
u

2

N t −M t tanh (u)

cosh2 (u)

−
(
∂Et

∂γi
− 1

2

Et

F t

∂F t

∂γi

)

×





λ2

√
2πF t

exp

[
−
(
Et
)2

2F t

]
+

∫
du√

2πF t (N t)3
exp

[
−
(
u− Et

)2

2F t

]
N t−M t tanh (u)

cosh2 (u)



 .(E3)

To optimise E t
with respe
t to γi one requires

∂
∂γi

E t = 0. The �rst term of the right hand side

of equation (E3) is independent of the index i and is zero if and only if the integrand is an odd

fun
tion. This is true if tanh(u) =
N t

M t
tanh

(
uEt

F t

)
∀u ∈ R. This 
ondition is only satis�ed

if Et (γc) = F t (γc) whi
h automati
ally makes M t = N t
. By the appli
ation of this 
ondition,

the sum between 
urly bra
kets in the se
ond term at the right hand side of Eq.(E3) is always

positive, whi
h implies

∂Et

∂γi
− 1

2

Et

F t

∂F t

∂γi

∣∣∣∣
γc
i

= 0.

The 
onditions Et (γc) = F t (γc) and
∂Et

∂γi
− 1

2

Et

F t

∂F t

∂γi

∣∣∣∣
γc
i

= 0 imply that:

lnEt = e0 + eT1 (γ − γc) +
1

2
(γ − γc)T E2 (γ − γc) + . . .

lnF t = e0 + 2eT1 (γ − γc) +
1

2
(γ − γc)T F2 (γ − γc) + . . . ,

therefore, if the 
riti
al point is a minimum, then the expansion Et/
√
F t =
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exp
{

1
2
e0 +

1
2
(γ − γc)T

(
E2 − 1

2
F2

)
(γ − γc) + . . .

}
has a se
ond term that satisfy the 
onditions:

det
(
E2 − 1

2
F2

)
> 0 and

(
E2 − 1

2
F2

)
ii
< 0, validating the optimisation pro
ess.
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