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Abstract

An efficient Bayesian inference method for problems that can be mapped onto dense graphs is pre-
sented. The approach is based on message passing where messages are averaged over a large number of
replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of
the solutions is required for carrying out the averages; here we extend the previous derivation based on
a replica symmetric (RS) like structure to include a more complex one-step replica symmetry breaking
(IRSB)-like ansatz. To demonstrate the potential of the approach it is employed for studying critical
properties of the Ising linear perceptron and for multiuser detection in Code Division Multiple Access
(CDMA) under different noise models. Results obtained under the RS assumption in the non-critical
regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the
critical regime one observes a first order transition line that ends in a continuous phase transition point.
Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems,
it was applied to the CDMA signal detection problem with a more complex noise model that exhibits

RSB behaviour, resulting in an improvement in performance.
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I. INTRODUCTION

Efficient inference in large complex systems is a major challenge with significant implications in
science, engineering and computing. Exact inference is computationally hard in complex systems
and a range of approximation methods have been devised over the years, many of which have
been originated in the physics literature |1]. A recent review 2] highlights the links between the
various approximation methods and their applications.

Approximative Bayesian inference techniques arguably offer the most principled approach to in-
formation extraction, by combining a rigorous statistical approach with a feasible but systematic
approximation. Although message passing techniques have existed for some time in the computer
science community |3, 4| they have enjoyed growing popularity in recent years |5], mainly within
the context of Bayesian networks and the use of Belief Propagation (BP) for a range of inference
applications, from signal extraction in telecommunication to machine learning.

The main advantage of these techniques is their moderate growth in computational cost, with
respect to the systems size, due to the local nature of the calculation when applied to sparse
graphs. Until recently, message passing techniques were deemed unsuitable for inference in
densely connected systems due to the inherently high number of short loops in the corresponding
graphical representation, and the large number of connections per node, which results in a high
computational cost. Both properties are considered prohibitive to the use of conventional message
passing techniques in such problems.

A recently suggested method for message passing in densely connected systems |G| relies on
replacing individual messages by averages sampled from a Gaussian distribution of some mean
and variance that are modified iteratively. The method has been applied for the CDMA signal
detection inference problem; it successfully finds optimal solutions where the space of solutions
is contiguous but breaks down when the solution space becomes fragmented, for instance, when
there is a mismatch between the true and assumed noise levels in the CDMA detection problem.

The emergence of competing solutions gives rise to conflicting messages that result in bungled



average messages and suboptimal performance. In statistical physics terms, it corresponds to
the replica symmetric solution in dense systems [7] and gives poor estimates when more complex
solution structures are required.

In the current paper, we methodologically extend the approach of Kabashima [6] for inference
in dense graphs by considering a large (infinite) number of replicated variable systems, exposed
to the same evidential data (received signals). Each one of the systems represents a pure state
and a possible solution. The pseudo posteriors, that form the basis for our estimates, are based
on averages over the replicated systems. The method has been employed previously only in
the non-critical regime |8|, using the most basic (RS-like) ansatz for the solution structure.
In the current paper we study both critical and non-critical regimes and extend the solution
structure considered to include step replica symmetry breaking (1RSB) like structures [9]. To
demonstrate the potential of this approach and the performance obtained using the resulting
algorithm we apply the method to two different but related problems: signal detection in Code
Division Multiple Access (CDMA) and learning in the Ising linear perceptron (ILP).

We investigate both RS and 1RSB-like structures. The former is applied to both CDMA and ILP
problems and seems to be sufficient for obtaining optimal performances; the latter is applied to
a variant of the CDMA signal detection problem with a more complex noise model that exhibits
RSB-like behaviour, to demonstrate its efficacy for particularly difficult inference tasks.

In section [[Il we will introduce the general models studied, followed by a brief review of message
passing techniques for dense systems in section [IIl The general derivation of our approach, for
both RS and RSB-like solution structures, will be presented in section [V} numerical studies of
both CDMA signal detection and ILP learning will be reported in section [Vl To demonstrate
the method based on the more complex 1RSB solution structure, and to examine its efficacy to
problems that require such structures, we will introduce a variant of the CDMA signal detection
problem and study it numerically in section VI We will conclude the presentation with a

summary and point to future research directions. Details of the derivation will be provided in

Appendices [AHEL



II. MODELS STUDIED

Before describing the inference method, the approach taken and the algorithms derived from it,
it would be helpful to briefly describe the exemplar inference problems tackled in this paper.
We apply the method to two different but related inference problems: signal detection in CDMA
and learning in the Ising linear perceptron (ILP). Both correspond to inference problems where
data points are noisy representations of sums of binary variables modulated by random binary
values.

Multiple access communication refers to the transmission of multiple messages to a single re-
ceiver. The scenario we study here, described schematically in figure [i(a), is that of K users
transmitting independent messages over an additive white Gaussian noise (AWGN) channel of
zero mean and variance o2. Various methods are in place for separating the messages, in partic-
ular Time, Frequency and Code Division Multiple Access [10]. The latter, is based on spreading
the signal by using K individual random binary spreading codes of spreading factor N. We con-
sider the large-system limit, in which the number of users K tends to infinity while the system
load § = K/N is kept to be O(1). We focus on a CDMA system using binary phase shift keying
(BPSK) symbols and will assume the power is completely controlled to unit energy. The received

aggregated, modulated and corrupted signal is of the form:

K
1
= —— S0, + oon 1
Yu m;ukk oMy (1)

where by is the bit transmitted by user k, s, is the spreading chip value, n, is the Gaussian
noise variable drawn from A (0,1), and y,, the received message. The task is to infer the original
transmission from the set of received messages. This process is reminiscent of the learning task
performed by a perceptron with binary weights and linear output, which is the next example
considered in this paper.

Learning in neural networks has attracted considerable theoretical interest. In particular we

focus on supervised learning from examples, which relies on a training set consisting of examples
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Figure 1: Schematic representation of (a) the CDMA system. (b) the ILP.

of the target task [L1]. We consider a perceptron, described schematically in figure [dI(b), which

is a network that sums a single layer of inputs s, with synaptic weights b, and passes the result

| K
Y =9 (\/—E ; Sukbk> , (2)

where g is typically a non-linear sigmoidal function. If g(x) = z the network is termed linear

through a transfer function y,

output perceptron. If the weights by € {£1} the network is called Ising perceptron. Learning is a
search through the weight space for the perceptron that best approximates a target rule.

The similarity between the linear perceptron of equation (2) and the CDMA detection problem
of Eq.([I) allows for a direct relation between the two problems to be established. The main
difference between the problems is the regime of interest. While CDMA detection applications
are of interest mainly for non-critical low load values, ILP studies focused on the critical regime.

We consider both regimes in this paper.



III. MESSAGE PASSING FOR INFERENCE IN DENSELY CONNECTED SYSTEMS

Graphical models (Bayes belief networks) provide a powerful framework for modelling statistical
dependencies between variables |3, 4, 5]. They play an essential role in devising a principled
probabilistic framework for inference in a broad range of applications.

Message passing techniques are typically used for inference in graphical models that can be
represented by a sparse graph with a few (typically long) loops. They are aimed at obtaining
(pseudo) posterior estimates for the system’s variables by iteratively passing messages (locally
calculated conditional probabilities) between variables. Iterative message passing of this type is
guaranteed to converge to the globally correct estimate when the system is tree-like; there are
no such guarantees for systems with loops even in the case of large loops and a local tree-like
structure (although message passing techniques have been used successfully in loopy systems,
supported by some limited theory [12]). A clear link has been established between certain mes-
sage passing algorithms and well known methods of statistical mechanics [2] such as the Bethe
approximation |13, [14].

These inherent limitations seem to prevent the use of message passing techniques in densely con-
nected systems due to their high connectivity, implying an exponentially growing cost, and an
exponential number of loops. However, an exciting new approach has been recently suggested [6]
for extending BP techniques |3, |4, 5] to densely connected systems. In this approach, messages
are grouped together, giving rise to a macroscopic random variable, drawn from a Gaussian dis-
tribution of varying mean and variance for each of the nodes. The technique has been successfully
applied to CDMA signal detection problems and the results reported are competitive with those
of other state-of-the-art techniques. However, the current approach has some inherent limita-
tions [6], presumably due to its similarity to the replica symmetric solution in the equivalent
Ising spin models |1, [7].

In a separate recent development [15], the replica-symmetric-equivalent BP has been extended

to Survey Propagation (SP), which corresponds to one-step replica symmetry breaking in di-



luted systems. This new algorithm, motivated by the theoretical physics interpretation of such
problems, has been highly successful in solving hard computational problems [15], far beyond
other existing approaches. In addition, the algorithm facilitated theoretical studies of the corre-
sponding physical system and contributed to our understanding of it [16]. The SP algorithm has

recently been modified to handle Ising and multilayer perceptrons [17].

IV. GENERAL FORMALISM

We recently presented a new approach [8] for inference in densely connected systems, which
was inspired by both the extension of BP to densely connected graphs and the introduction of
SP. The systems we consider here are characterised by multiplicity of pure states and a possible
fragmentation of the space of solutions. To address the inference problem in such cases we
consider an ensemble of replicated systems where averages are taken over the ensemble of potential
solutions. This amounts to the presentation of a new graph, where the observables y,, are linked
to variables in all replicated systems, namely B=(b', b2, ... b"); where b*= (b b3, ... b&)T,
shown in figure @ To estimate the variables B given the data y' = (y1, 92, . . . ,yN), in a Bayesian
framework, we have to maximise the posterior P (B|y) Hﬁ; P (y,|B) P (B), where we have
considered independent data, and thus P (y|B) :H;]LV:1 P (y,|B).

The likelihood so defined is of a general form; the explicit expression depends on the particular
problem studied. Here, we are interested in cases where b € {jzl}K is an unbiased vector and
P (B)=275"_ The estimate we would like to obtain is the maximiser of the posterior marginal
(MPM) by = argmaxy, cqiqy» Z{b#k} P (Bly) , which is expected to be a vector with equal
entries for all replica b = = = b" The number of operations required to obtain the full
MPM estimator is of O (2K) which is infeasible for large K values.

To obtain an approximate MPM estimate we apply BP message passing technique |3, 4, 5]. In
particular we are interested here in the application of BP to densely connected graphs, similar

to the one presented in [6]. The latter is based on estimating a single solution and therefore does
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Figure 2: Replicated solutions B=(by, bs,..,bg) given data.

not converge, as has been observed, when the solution space becomes fragmented and multiple
solutions emerge. This arguably corresponds to the replica symmetry breaking phenomena and
occurs, for instance, when the noise level is unknown in the CDMA signal detection case.

A potential algorithmic improvement is achieved by the introduction of an SP-like approach,
based on replicated variable systems, similar to the approach taken in problems that can be
mapped onto sparsely connected graphs.

Using Bayes rule one straightforwardly obtains the BP equations:

P (b {yosn}) = Y PulB) [T P (il {wo}) (3)

{b#k} I#k
Pt (bl| {yl/?ﬁ,u}) X H Pt (yu|bl7 {yoaéu}) . (4)
vEL

For calculating the posterior P (y|B), we assume a dependency of the data on the parameters
of the form y, = F <Z£1 z—:ulbl;'y), where F is some general smooth function, v are model
parameters and £, are small enough to ensure that Z{il eub} ~ O(1). We define the vector

A, =K b = D ik €1 A €kbr = Ay + €by. Thus, using y, = F (Aux + €ubi; y) we



can model the likelihood such that
PB) = [ A8uP (. AiBiy)
= /dA,ukP (yu‘A,uka B§7) P (A,uk‘B)

= /dA,ukP(yu‘A,uk+5ukbk§7>P(Auk|B>

12

/ A [1+£,ubIVa, 10 P (5] Ay v)] P (5 A y) P(AwlB) . (5)

where we have assumed that P (y,|A ., B;v) = P (y.|Au + €ubi; ),

due to the assumed dependence of the observed values y, on A, and by.

A. Inter-replica correlations

An explicit expression for inter-dependence between solutions is required for obtaining a closed

set, of update equations. We assume a dependence of the form

1
P! (e ) x exp { T b+ 3TQL b | ©)

where th is a vector representing an external field and sz the matrix of cross-replica interaction.
The form of Qik depends upon the particular case considered. We assume one of the following

symmetry relation between the replicated solutions:

(nl)™ = Ay,  and
((RS)QZk)aa _ 5aa’ Q(t)uk i (1 . 5aa/) qiuk or

((1RSB) Zk)fafa _ s ((RS) Lk)aa n (1 _5zz'> q;uk’

where ¢ is a block index that runs from 1 to L and ‘a’ is a intra-block replica index that runs
form 1 to n where n is the number of variables per block. We also make the following reasonable
assumption qéuk > qhk > qéuk > 0, as one expects correlations to gradually decrease between

variables with non-identical replica and block indices, respectively.
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For both types of symmetries considered, the correlation matrix defined as:

(ri)' " = <A£kﬂfm> - <Afm> <Afm>

where I is an index or a pair of indices for RS and 1RSB, respectively. The correlation matrix
is assumed to be self-averaging, i.e. TZk ~ Y and preserves the symmetry of the matrix sz.
An explicit derivation of the entries of Y is presented in Appendices [A]l and [B] for the RS and

RSB-like correlation structures, respectively; the matrices take following the general form:

aa’ ’ N 1
((RS)Tt) — 5 xt + <1 o 5aa) R
n
((lRSB)'rt)ag a't! _ 5%’ 5aa’Xt + <1 _ 5aa’) lvt + <1 _ 5%’) L (Vt _ Rt) )
n nL
Thus, for the appropriate centre of the distribution uf, (see equations (AS) and (BI3)), the

probability of A, can be expressed as:

1 1 T -
PaiB) = |y | = (B~ ) (007 (e - vl
2 2
9 —ul A%y =
pk n pk

fdl? exXp§ —"Nn % Ha:l €xXp § — ( 22Xt )

. 2
e @ (e

Jde [T, exp{ 5 | vi— i + Vi— L1 (VI - RD) [[iziexp 2(Xt —n 1VY)

for the RS and RSB-like correlation matrices, respectively, where 19% = 90 4+ 9 + ul,, and

e = (0,0, ... v").

B. Messages

Having obtained the conditional probability distribution P (A ,;|B) one can then derive explicit
expressions for the messages m,;, (magnetisation) and m,; that can be viewed as parameters

in the corresponding marginalised binary distributions P’ (y,[br, {y2,}) o (1 + 1 ,b)/2 and
Pk {yuzn}) = (14 mybe) /2.

10
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The messages from nodes y,, to nodes by, as derived in Appendix [C] equations (C1)-(C8)

q'g.t —ut
wk wk
gt = B ) (8)
" U —u A% ’
%ku Cuk 72V (RSB)
QVE—RE " 2n 1- PV
i i
where P; = 8—197; ~, P is defined in equation (C3)) and ¥}, is obtained from the saddle point
9=t

equations given by equation (DIJ) in the RS case and by equation (D2) in the 1RSB case. The
messages from nodes by, to y,, are given in both cases by the expression mfm ~ tanh (Zu#u ﬁzfjk) .
For the gauged field byh!, where h!, = artanh (ml,) = > artanh(m!,) ~ > _ m!,. The
distribution of this field is well approximated by a Gaussian as a result of the central limit

theorem. The mean and variance of the Gaussian are E' and F' respectively:

1 K N

E' = ?ZZbkmLk (9)
N[ X , | X 2 | KN )

P e - (o) [ =303 ()"

Both E* and F* are assumed to be independent of the index u by virtue of the self-averaging prop-
erty. For the same reason we expect the macroscopic variables defined as be = Zszl bkmik /K ~
S bymk/K = M' and N, = S (mik)2 JK ~ YK (mh)?/K = N, where m} ~
tanh (Zivzl ﬁ@,tjk), to be independent of the index p. Thus, these macroscopic variables can

be evaluated by the following integrals
Mt = / Du tanh (\/Ftu v Et> Nt = / Du tanh? <\/Ftu n Et> ,

where Du = exp (—u?/2) /\/2~.

11



C. Optimisation

The structure of the correlation matrix used introduces free variables in the form of the correla-
tion terms between replicated solutions. These are used for optimising the estimation provided
with respect to a given performance measure.

Since the MPM estimator is given by bl = sgn (m?) ~ sgn (m!,) = sgn (h!y), the expression for

the error per bit rate takes the form:

Pl = % Z (1 — sgn (bkmi)) , (10)

k=1
which is minimised when the true message vector b and the vector of messages m’ are parallel.

Therefore, the error rate per bit decreases as the ratio M*/v/ Nt = cos (b mt) increases. The

OE' 1 E' OF"
optimal value is reached when E'(~¢) = F'(4°) and — — = —

7, 3 F o, = 0 as derived in

v

Appendix [El

V. CDMA AND LINEAR ISING PERCEPTRON

Using this notation one defines €, = suk/\/ﬁ for the CDMA problem and €, = suk/\/? for
the Ising perceptron. The goal is to get an accurate estimate of the vector b for all users given the
received message vector y via a principled approximation of the posterior P(bly). An expression
representing the likelihood is required and is easily derived from the noise model (assuming zero
mean and variance o?). If the arithmetic variance over replicas of the macroscopic message AZk
is finite and independent of the sub indexes p and k, i.e. 22 =15 (Aik)Q - (L3, Afm)2 <
oo V ik, then P (y,|B) can be expanded as

n =2 AT — A €
P(yu|B) ~ e3? exp {_(YH uk) (Yu uk)} [1 + L’“bg (Yu _ Auk)} ’ (11)

2w o2 202 o2

12
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where y, = y,u and u' =(1, 1, ---, 1). The function P (9,y,), defined in equation (C4), and
obtained from this distribution is linear in 1J; therefore, the second derivative used for calculating
the messages in equation (8) P, = 0 and the corresponding structure of the correlation matrix is
RS-like.

To calculate correlations between replica we expand P (y,|B) in the large N limit in (1), as
shown in equation (Bl). According to the RS correlation assumption, the macroscopic variables

satisfy the following relation:

ut, = 71 E smt
k !
a vellN B

LV g
X! ~ 62(1—Nt) )

where e, = 1(8) for the CDMA (ILP) system and e; = (1) for the CDMA (ILP) systems,
respectively, due to the change in scaling. The saddle point equation (C6) provides a dominant

value for the variable ¢

3 _ Rt Uzuzk N
TP XrRA\X R )
A. Messages

The message from y, to b} at time ¢ + 1 is then given by:
1 Yo — Uy
M = Sk 5t i (12)
The main difference between equation (I2) and the equivalent equation in [6] is the dependence
of the pre-factor on R', reflecting correlations between different solutions groups (replica). To
determine this term we optimise the choice of o by applying the condition E* = F*. Forcing this

condition leads to a relation between the structure of the space of solutions, represented by R,

and the free parameter of the model 0. From equation (I2) and using E' = F' and M* = N!

13



one obtains:
1

0-2 + Xt + Rt
which imply, after simplification, that for both cases R' = 02 — 0. Despite the simplicity of this

B — i el [03 _i_Xt} (Et+1)2 ’

result, the process from which we obtained it provides us with a practical way to estimate the true
noise variance. Notice that for calculating E* and F* we used the limits K, N — oo with K/N =
B. So that o2, which appears in the expression for F'*, can be obtained from the signal vector of

Y, with an infinite number of entries. Thus

1 N

lim _Z(yu)Z =ey+ 0p.

N—oco N
pn=1
Using this expression we can finally express the message as:

t
St+1 yu_uﬂk (13)

Z (yu)2 — e N?
pn=1

==

where no prior belief of ¢ is required.

B. Steady state and critical analysis

The steady state equations for the macroscopic variables N and E! are obtained by taken the
limit ¢ — co. Let us define N = lim;_,oo N* and E = lim;_,o E'. In the asymptotic regime the

following relations hold:

N(e.0) = [Du tanh2( E(o—g,ﬁ)quF(ag,ﬁ)) (14)

o
E (03,8) = o2+ ey (1— N (a2, 5))

and from these expressions one can obtain the full expression for the error per bit rate:

5 1 E (0, )

Py (03, 8) = 5 1+ erf 5 (15)
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Figure 3: (a) Error probability of the inferred solution evolving in time. The system load 5 = 0.25,
true noise level 02 = 0.25 and estimated noise 02 = 0.01. Squares represent results of the original
algorithm [6], solid line the dynamics obtained from our equations; circles represent results obtained
from the suggested practical algorithm. Variances are smaller than the symbol size. (b) D!, a measure

of convergence for the obtained solutions, as a function of time; symbols are as in the main figure.
C. CDMA signal detection - numerical results

The inference algorithm requires an iterative update of equations (CYI3) and converges to
a reliable estimate of the signal, with no need for prior information of the noise level. The
computational complexity of the algorithm is of O(K?).

To test the performance of our algorithm we carried out a set of experiments of the CDMA
signal detection problem under typical conditions. Error probability of the inferred signals was
calculated for a system load of 3=0.25, where the true noise level is 02 =0.25 and the estimated
noise is 02 =0.01, as shown in figureBl(a). The solid line represents the expected theoretical results
(density evolution), knowing the exact values of o2 and o2, while circles represent simulation

results obtained via the suggested practical algorithm, where no such knowledge is assumed.
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The results presented are based on 10° trials per point and a system size N = 2000 and are
superior to those obtained using the original algorithm [6].

Another performance measure one should consider is

Dt = i (mt _ mt—l) ) (mt _ mt—l) ’

K

that provides an indication to the stability of the solutions obtained. In figure B(b) we see that
results obtained from our algorithm show convergence to a reliable solution in contrast to the
original algorithm |6]. The physical interpretation of the difference between the two results is

assumed to be related to a replica symmetry breaking phenomenon.

D. Ising linear perceptron - numerical results

For the ILP, the K > N regime of high interest as the system develops a critical behaviour for a
range of 02 values. We carried out a set of experiments for this system based on density evolution.
In figure @(a) we present curves of the bit error probability P, defined in equation (&), as a
function of the inverse load 7! for different values of o2. Three different regimes have been
observed: For o2 < 0.1025 the curves exhibit a discontinuity at a value of 8 that varies with o2
(first order phase transition-like behaviour). At o2 = 0.1025 the curve becomes continuous but
its slope diverges (second order phase transition-like behaviour). The P}, curves show analytical
behaviour for noise values above 0.1025. Figured(b) exhibits a phase diagram of the ILP system;
it shows the dependency of the critical load 551 as a function of the noise parameter. The
first order transition line ends in a second order transition point marked by a circle. The results
obtained, and in particular the critical 3 value, are consistent with those derived using the replica
symmetric statistical mechanics-based analysis of the problem [11].

Another indication for the critical behaviour is the number of steps required for the recursive
update of equation (I4) to convergence. In figure [Bl(a) we present the number of iterations

required to reach a steady state as a function of 37! when the noise parameter is set to o3 = 0.1.

16
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Figure 4: (a) The error probability Py at the steady state, equation (5], as a function of 3~ for different
values of the noise parameter. For values of o2 below 0.1025 the curves show discontinuity at certain
B values, which becomes continuous but non-analytic at 0’8 = 0.1025 around S~! ~ 0.68. For noise
variance values above o2 = 0.1025 the curves become analytical. (b) Position of the non analyticity of
the error rate curve ﬁal as a function of the noise parameter 0(2]. This first order phase transition-like

curve ends in a second order phase transition-like point marked by (o).

The number of iterations diverges when the critical value of  is reached.

Finally, we wish to explore the efficiency of the algorithm as a function of the system size.
In figure Bi(b) we present the result of iterating equations (C9) and (I3)) for a system size of
K =500. The curve presents mean values and error bars over 1000 experiments. There is a strong
dependency of the error per bit rate on the size of the system, which is expected to converge to

the asymptotic limit (infinite system size) represented by the solid line.
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Figure 5: (a) Number of iterations of equation (I4]) required for convergence as a function of 3, for
02 = 0.10; one clearly identifies the 3 value where the error rate curve exhibits a discontinuity. (b)
Finite size effects are observed at all 8 values. The noise level used is 02 = 0.10 with K = 500. The
curves provide mean values and error-bars over 1000 experiments. The solid curve obtained from the

iteration of the steady state equations is presented as a reference.

VI. CDMA SIGNAL DETECTION WITH DUAL-PEAKED GAUSSIAN NOISE

To demonstrate the suitability of the method for more complex inference problems that require
a system with 1RSB-like structures, we will consider the CDMA signal of equation (1) where the

noise n, is drawn from a bi-Gaussian distribution:

P(n,) = 1_2T0\/%exp{—(n“+;0/ao) }+ 1J;T0\/12_7Te><p{——(n“_;0/00) } . (16)

where ry € (—1,1) represents the bias and +e¢/0q the positions of the Gaussian peaks. We

consider the particular case where |eg/0¢| < 1, so that the Gaussian peaks are slightly off centre.
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For this model the likelihood expression takes the form:

Lo — _Afa 2

202

. 2
Lt [ oo

where 7, € and o? are estimates of the true parameters ry, €y and o2.

To derive the messages in this case we first calculate the function P (¢,y,) of equation (C4),

which has the form:

Y, — U € Y, — U
P(9,y,) = 02“+ S tanh <502N+ < + arctanh(r)) ,

where X' = 3(1— N?*).
Following the derivation of Appendix [C] the saddle point equations (DI)) and (D2)) can be

expressed as:

1L

Iy = by + WP (@tk,yu>

~ _ 51& Wt _ ﬁt
Y — Ve = Y — g, — W' Y O +e tanh (»su + arctanh(r)

nk o2+ Xt o? + Xt o2 + Xt
Yn —~ % Y — Uy £ wt Yy — ﬁfm
o2+ Xt o2+ Xt Wt + o2 L X! o2 L Xt LW tanh SR Xt + arctanh(r)

z = pw (y. — ujy) + € (po — pw) tanh (ez + arctanh(r))

12

20+ 7 Apwe+ (1 —7’2) Apw z€°
—r (1 — 7"2) Apy 22 — % (1 — 7"2) (1 — 3r2) Apy 23,

where we denote W' = R! for the RS case and W' = 2V* — R for the 1RSB case, z = i‘;f)%f,

pa= (0 + X'+ A7 2= pw (y, — uly) and Apw = po — pw-.

The solution of this equation provides, up to order O (%),

z(e) ~ zo+71Apwe+ (1 — 7’2) Apw | z0e® + 1 (pr — zg) e+ (1 — 37’2) 20 (pr — %zé) 54} .
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The function P and its two first derivatives at the saddle point value are:
Po = —r[1+ (1—7%) Apwe?] pwe+
1= (=) pre® = (1—72) (1 37) Apw pdy €' (y — uly) +
1 (1=7) ply (g — ju) " + % (1=7%) (1=37%) piy (e — )"’
Pr ~ —po+ O (?)
Pa = 25 (1= 77) [re + (1= 3r%) pw (y — ty) £°]

therefore, one can obtain the following expression, required for calculating the messages in the

I_I{SB case (m)
1 ;[ v 2 3 —l_ — I7 p u €
27‘/ — ( r )POApV TE (1 3 ) 1%7%4 (yu uk:) ] )

where Apy = pg — py. This straightforwardly leads to the following expression for the message:

(IRSB) 41 _
My, =

f/% {=low+ (1 =) (Va—piv) e®] ret
+ow [1= (1 =r*) pwe® = (1—=77) (1=3r") (Vo — o) €] (ypu — up) +

1

b (L= ) e (= 1) 4 5 (1) (1= 302) gl ! (= o) (17

where 7,, = po (pW — %Apv). The expression for the message in the RS case is recovered from

equation (I7) in the limit n — oc.

A. Optimisation and messages

Calculating the expressions for the macroscopic variables E'*! and F'*! used in the optimisation

process, requires performing the following sums, in the limit of K, N — oo with K/N = 8 < oc:

N K

L 1 Ep j
4; = KljlvrgooZEk 1 \!}N (y“_uiky
/J, —
1 L1 &E .
B = K,%§wﬁ§§;(yﬂ‘“3k) !



where j =0,...,3 and [ =0,...,4. From the definition of the signal y, (Il) and the expression
for the noise GE) we find that AO = 0, Al = 1, Ag = 231, A3 = 332, BO = 1, Bl = Tofo,
By = B(1 —2M"+ N*) + 02 + €2, By = By (3By —2¢2) and B, = 3B3 — 2¢j. The explicit

expressions derived for the macroscopic variables are:
EFY = pw — (1 =7 pjy € +2r (1= 1%) Bipyy e® — (1 —r?) (1= 3r%) [T, — (1 + Bapy) piy | pw €*
Fit = ng%,v — 27"Blp%,v5

+ [7’2 -2 (1 — r2) ngw} p%,v g2 — o (1 — 7’2) B, [Tn — (24 3Bapw) p%,v} pw €3 +

(= r2) [26% (T — 2) pw + (1= 3r2) By (3% + 2Baply — 20,.) p] €.

Applying the optimisation conditions of Appendix [E, E'(y°) = F'(°) and
oE' 1 E' OF! . - . . .

——— ——1| =0, wherevy' = (r, €,0°, —) one obtain the following conditions:
i 2 Ft Oy ye "

1 g2 ¢l o2 1= Bapy (1= 2By Apy)
pW—EQ+B_§_B_§’+(1_T) Bg’ 3 (18)
1 — Bapg (1 — 1B,A
re = Bi+r(1-1?) 2p°(B xB2brv) s (19)
2

In the 1RSB case one can further simplify these expressions by a suitable choice of V' and the

number of replicas per block n. Optimisation with respect to the latter results in

1
1 = Bapo (1 — EB2A/)V) ; (20)

which implies

(X' +0°)" (0 = o) ’
(X! +02)° = (X' +0%) (02 - o)

t_

Vi= 1

n

that by definition is larger than zero. This condition is satisfied if our estimate for the noise

variance is smaller than the true parameter (o2 < o2). In this case the number of replicas per

block has to satisfy the condition
(X + 02)”

(X4 0%) (0 — o)’

1 Sngf(Xt;Ug,UQ) =
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Interestingly this ties the noise level mismatch to the number of replicas, thus giving further
insight to the role played by the structure of the inter-replica correlation matrix.

For 0 < X* the minimum value of f (X 03, 0?) is reached at X,,;, = max (0,07 — 20?%). It is
also possible to prove that 4 < f (X,,in; 02, 02) . Although V! and n will not be explicitly used in
the following expressions, the correct choice of the value for these parameters allows one to use
equations (I8) and (I9) in order to find the final expression for the macroscopic variable E**!

where no estimates are needed for the noise parameters:

1

(IRSB) ppt-+1 _
By — B}’

Note that in the RS case we do not have the freedom to choose the number of replicas per
block, given that this case is equivalent to take n — oo in the absence of the additional replica

l=1,..., L. For this reason equations (I8) and (19) and (I9) take the form:

1 g2 &
pw = ot 3 —

2 1—ng0 4
JR— 78
B, B B}

+(1—7r%) B (21)

1-B
2[)0637

re = By+r(1—r?) 5
2

(22)

and the macroscopic variable

(RS) ppt+1 _ (IRSB) pt+1 2B7 (¢* - BY) ( By _ 1) ’

B3 Xt + 02
which depends on both estimates of the noise variance ¢ and bias «.
Given that the algorithm deals with finite signal vectors (N < co), the quantities B; and Bs

have to be approximated by the correspondent finite sums. Therefore, we have:
1 N
_ ; t ~ )
RN TN 5 35 S MIUSIREES o 2
p p=

. 1 a 1 = t 2N1 al 2 t _ D,
By = lm =% 2> (v ) NNZ;?/M_I_ﬁN =B,
/J/:

where we used the fact that limy g0 ﬁ Zu & Ufm = 0. Observe that no information about the

true noise has been used to derive these expressions.
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Having the estimates (23] we can write down the messages explicitly:

— — —2 =2
R s B, B 1 B} 3*-2B
(IRSB) pyt+1 Kk {—:1 + F—;Ez + (: + r; - Tlfz> (yu - ufm) +

e VN | B B B, B B,
AR )
+T§ (Y = )"+ 3 B (¥ — 1)

— 2 _ 9B
By +2——— (yu — ujy)
2

— —2
B e2 - B

(RS) i+l _ (IRSB)pmidl 4 Suk (1_ 2 ) 1
pk nk \/N §2

2
which can be now used recursively for obtaining the inferred solutions for this problem. Notice

that an estimate of both € and o in required in the RS case.

B. Numerical results

To test the performance of the 1RSB algorithm we carried out a set of experiments of the
CDMA signal detection problem with bi-Gaussian noise. The results shown in figure[6[a) describe
the error probability of the inferred signals as a function of the number of iterations has been
calculated using both RS and 1RSB-like correlation matrices for the case of parameters mismatch.
The system load used in the simulations was 3=0.25, the true noise level o3 =0.25, Gaussian bias
of £9 = 0.06 and weight ry =0.6. The estimated noise parameters are 0>=0.01 and € = 0.2. The
circles represent simulation results obtained via the 1RSB algorithm while the squares correspond
to the RS-like structure. The results presented are based on 10° trials per point and a system size
N =1000; error-bars are also provided. The results obtained using the 1RSB-like structure are
superior to those obtained using the RS algorithm. As shown in figure [l(b) using the stability
measure D', both RS and 1RSB-based algorithms converge to reliable solutions; the 1IRSB-based
algorithm is slightly slower to converge, presumably due to the more complex message passing

scheme.
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Figure 6: (a) Error probability of the inferred solution evolving in time, for the bi-Gaussian noise case.
The system load § = 0.25, true noise level 0’8 = 0.25 and estimated noise 02 = 0.01. Squares represent
results of the RS algorithm and circles represent results obtained from the 1RSB algorithm. (b) D?,
a measure of convergence in the obtained solutions, as a function of time; symbols are as in the main

figure.

VII. CONCLUSIONS

We present and methodologically develop a new algorithm for using BP in densely connected
systems that enables one to obtain reliable solutions even when the solution space is fragmented.
The algorithm relies on the introduction of a large number of replicated variable systems exposed
to the same evidential nodes. Messages are obtained by averaging over all replicated systems
leading to pseudoposterior that is then used to infer the variable nodes most probable values.
This is done with no actual replication, by introducing an assumption about correlations between
the replicated variables and exploiting the high number of replicated systems. The algorithm was
developed in a systematic manner to accommodate more complex correlation matrices. It was

successfully applied to the CDMA signal detection and ILP learning problems, using the RS-like
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correlation matrix, and to the CDMA inference problem with bi-modal Gaussian noise model
in the 1RSB-like correlation matrix. The algorithm provides superior results to other existing
algorithms |6, 18] and a systematic improvement where more complex correlation matrices are
introduced, where required.

Further research is required to fully determine the potential of the new algorithm. Two particular
areas which we consider as particularly promising are inference problems characterised by discrete
data variables and noise model and problems that can be mapped onto sparse graphs. Both

activities are currently underway.

Acknowledgments

Support from EVERGROW IP No. 1935 of the EU FP-6 is gratefully acknowledged.

[1] M. Mézard, G. Parisi and M.A. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore
(1987).

[2] M. Opper and D. Saad, Advanced Mean Field Methods: Theory and Practice, MIT Press, Cambridge,
MA 2001

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann Publishers, San Fran-
cisco, CA (1988).

[4] F.V. Jensen, An Introduction to Bayesian Networks, UCL Press, London (1996).

[5] D.J.C. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University
Press (2003).

[6] Y. Kabashima, J. Phys. A 36, 11111 (2003).

[7] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing, Oxford University
Press, UK, (2001).

25



[8] J.P. Neirotti and D. Saad, Europhys. Lett. 71, 866 (2005).
[9] Although we will be using the terms RS and RSB, it should be clear that this is not directly related
to the replica approach [L, 7], but merely uses similar structures for the cross-replica correlations.
[10] S. Verdu, Multiuser Detection, Cambridge University Press UK (1998).
[11] H. S. Seung, H. Sompolinsky and N. Tishby, Phys. Rev. A 45, 6056 (1992).
[12] Y. Weiss, Neural Computation 12, 1 (2000).
[13] Y. Kabashima, D. Saad, Europhys. Lett. 44, 668 (1998).
[14] J.S. Yedidia, W.T. Freeman and Y. Weiss, in Advances in Neural Information Processing Systems
13, 698 (2000).
15] M. Mézard, G. Parisi and R. Zecchina, Science 297, 812 (2002).
16] M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126 (2002).
7] A. Braunstein and R. Zecchina, Phys. Rev. Lett., 96 030201 (2006)
18] Y. Kabashima, Jour. of the Physical Society of Japan 74 2133(2005)

Appendix A: THE REPLICA SYMMETRIC (RS) ANSATZ

Within the RS setting, the interaction term in equation () is:

n 2
b Qlbr = (o — @) + ¢ (Z bZ) ,

a=1

A simplified expression for equation (6) immediately follows

P (b {yoru}) = [Z54] 7 exp kzba_l' 5D (Z ba)
e} 1’2 n
= [Zﬁk]—l/ dz exp —5 (2 + Ry, sz

qluk -1

where Z! Lk 1s a normalisation constant. The diagonal elements qO,uk only affect the normalisation

term and can therefore be taken to zero with no loss of generality.
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We expect the logarithm of the normalisation term Z,’ik (linked to the free energy), obtained

from the well behaved distribution P?, to be self-averaging. We therefore expect

tim o (Z1,) = fim 10w (21 (1))
where % and g1 are the mean values of the parameters drawn for some suitable distributions and
the over-line represents the mean value of the partition function over these distributions.
In the following we will drop the upper-index ¢ and the sub-indices p and & for brevity. To obtain
the scaling behaviour of the various parameters one calculates Z (h, ¢;) explicitly, assuming the
parameter ¢; is taken from a normal distribution A (él, ag). The partition function takes the

form :

Z(h,q) = /_00 de exp (—M +nln (2 cosh(x))) . (A1)

Thus, the mean value of the partition function over the set of parameters is:

Z(h,q) = /Dql Z(h,q),

where D, = dq; N( 7041) The normalisation can be expressed as:

- S0 [ (-3) 4 (-3) (2]
Aln) (n+ 1)(7;2) exp {n {Ihl +n% +n3%§1”

~ /2 I
~ \/;A(n) exp{n [ln(2)+\h\+n2 +n 2 :

where A(n) ~ O(1). Thus, h ~ O (1), ¢ ~ O (n™') and o7, ~ O (n™?). >From now on we will

take the off-diagonal elements of the RS matrix Q;,, equal to gi,/n, where g , ~ O (1).
The form of the marginalised posterior at time ¢ is then:

oo _ht
/ dx exp{—n(xzqf“k) +:L"Zba}

—00 1uk

P! (bk| {yl/?ﬁ,u}) = /OO - ) (A2)

dz exp {—n® (23 by, 91,) }

[e.e]
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hgf

Figure 7: Solutions for the mean field equation (A3) with two maxima and one minimum for a positive

value of the field h.

where )
(5” - hik)

29§,uk

b (z; o giuk) = —In (2 cosh(z)) .

The function @ (z; h, g1) presents one or two minima according to the following table:

h g1 Number of minima

heR |0<g; <1 one min.

|h| = he] g1 >1 |one min. and one hump

|h| < hel g1>1 two min.

where h, = \/g1(g1 — 1) — cosh ™ (\/ﬁ), the coefficient g; plays the role of the inverse tempera-

ture. Below the critical value g;. = 1 a spontaneous magnetisation appears.

This results from analysing the equation:

0P (z;h,91)  x—h B
pe = tanh(z) = 0. (A3)

The case of two maxima is presented in figure [7l
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We define the mean values from the distribution equation (A2). If the field A is not zero, as
shown in figure [ [exp (—®)]" develops one dominant maximum as n — oo. For large enough
n, only this maximum contributes to the integrals (A2) and the algorithm obtained from this
assumption turns out to be the same as the one presented in [6]. However, if the field is
sufficiently small it gives rise to a new regime where the two maxima contribute. At the same
time, it is important to note that a small, non zero field favours the solution of Eq.([A3]) that
satisfies sgn(z) = sgn(h). To analyse the behaviour of the field, we will explore the solutions of
Eq.([A3)) in the regime 0 < |h| < 1. With this aim, suppose that the solutions for the Eq.([A3]) at
zero field are xy = g1 |m| where m = tanh (o) and sgn(m) = sgn(h). If the field is sufficiently
small one can expand the solutions of equation ([A3) as x4, = £g1m+&(m, g1)h where £(m, g1)h
is expected to be small and satisfies sgn (£(m, g1)h) = sgn(h). Observe that if the field is positive
(negative), both roots are displaced to the right (left) with respect to the zero field solutions.
Using this expression for the roots in Eq.(A3) and disregarding terms of O (h?) one finds that

1
1—gi(1—=m?)"

The expression for the exponent @ mnear the roots and in the 0 < |h| < 1 regime is then
D (x1p;h — 0,91) ~ D (20;0,91) F mh = g F mh, and, by the definition of the m, the product
mh is positively defined.

Let us define 81y, (m, g1) = (1 — m?) [1 F 2£ (m, g1) mh]. We expect that, for large n the following

approximation to be valid:

exp {—n® (z;h — 0,91)} ~ e " {e"mh exp {—g [97" = Br (m, g1)] (z — xh)z}
n

e "M exp { 5 [gl_l — B (m, g1)] (= — x_h)2}} . (A5)
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Using equation (AZ) one can calculate the normalisation in equation (AT

Z(h—0,g1) ~ g Po—mh) /dx exp {—g [91—1 — B (m,gl)] (x — xh)z}
v [z esp {2 ot — 0 (m, )] (o 20}
~ 279157(17"7 gl)e—ngpo{ enmh(l - (1 _ m2) 52 (m, g1) mh)
+ e_"mh(l + g (1 — m2) £ (m, g1) mh)} . (A6)

The mean value of a given function f(x) with respect to the conditional probability distribution

defined in equation ([A2)) is then:
G 0.00) = 270 @ [l exp {1 (67"~ (1-m) (126 (m,02) mh) (a0}
)+ o= ) 4 (o= ) o)
Z 1 n(@otmh) /dx exp {—g [g7" = (1=m2) (1+2¢ (m, g1) mh)] (x—x_h)z}
@) o =2 £ ) 5 o= a7 )]

which implies, considering that the integrals of the linear terms are zero and keeping only the

leading terms in the expansions, that the expectation values takes the form:

(f(@)|h = 0,01) =~ [1—e ™" (1426 (m, g1) mh)] {f (zn) + Qg—;g (m,g1) " (xh)}
e 2 (1426 (m, g1) mh) f () -

Considering the expansion of f(zy,) =~ f(xgm+E&(m,g1)h) =~ f(xgm) +
&(m,q1) f' (£g1m) h and disregarding terms of O (he_znmh), one can write:

(f(@)h—0,91) = f (m91)+2g—;§ (m, g1) f" (mg1)—e """ f (mg1) — f (—mg1)+f" (mg1)€& (m, g1) h.
(A7)
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The resulting one and two variable expectation values become
(Bl = 0,0 = > P (bk] {yuzu}) b = (tanh(w)|hly, — 0, 914
{bx}
~ _% 1_(mt )2 g(mt ¢ )_26—2nmzkhik mt
- n wk uk> gluk wk
2
€ (mnte) [ ()]
and

<6262|th — Oagim) = P (be| {ywzu}) beE = 5 + (1 - 5ab) <tanh2(x)|hik — ngipk> )

where

gt
(i (0 = 0,t) = )+ (ks ) [1 = ()] {228 [1 =3 (k)] + 2t}

and
<bzb})|h’flk - 07giu,k> = <bz‘h2k - ngiuk> <b})|h’flk - 07giu,k> :

Thus, the leading terms for the covariance matrix of the replicated variables are:

(lI’Zkl)ab = <be}’|th — O,QLM hZz - 0’9§ul> - <bZ|th — O,ghk> <b;3|hfd — 0’9§ul> = 0w (‘I’Zk>ab
(WL)™ = 0 1= (mly)’]

nk
t 2
(0= 0%) {22 (it ) [1 = ()] et (1 eommiant) (i)}

If one requires the non-diagonal elements of this covariance matrix to have the same scaling as

the inter-replica interaction matrix, the field has to behave in such a way that the exponential
2n

t
Nk

where the nfm are appropriate constants. With this asymptotic behaviour, the expression for the

Y

1
term contributes at most in O (n~'). One thus expects the field to obey mi,h!, < —In
n

entries in the covariance matrix is

(@0 2 6% [1 = ()] + (1 - o) 9 (Ml 94 ) = )]

s n
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which serves to define the probability distribution for the macroscopic variable A%, =", Lk €uby.

As e, and b} are unbiased variables, the variable by virtue of the central limit theorem,

uk’

obeys a normal distribution, with mean value and covariance matrix given by (to highest order)

() =A%) = > TIP bl {yes) D cubf =D eumiy (A8)

{bl;ék} I#k l#k £k
2
(Tik)ab = <AZkAEk> - <AZ > <AZ> = Z HPt (bu] {yuz}) Z‘gul‘gwbl <Z 5ulmul>
(b } 12k Ik 14k
J#k
- quz ‘I’uly a = 5aquk + (1 - 5ab) Rum
Ik
where
X = Zsil [1 — (mfd)z} and (A9)
1k
2
Rka = ngl gl,ulé- uluglul) [ - (mil)2:| )
14k

are macroscopic variables of O(1). In particular, Rik is a free variable that can be used later on to
optimise a given performance measure. This variables have the property of being self-averaging,

therefore we can drop the sub-indices p and .

Appendix B: THE ONE STEP REPLICA SYMMETRY BREAKING (1RSB) ANSATZ

Under a solution correlation matrix that resembles the 1RSB structure, the system comprises
nL variables, where both the number of blo