1,044 research outputs found

    Fabrication of thin film solar cell materials by APCVD

    No full text
    Thin film solar cells are currently being implemented commercially as they reduce the amount of semiconductor material required for each cell when compared to silicon wafers, thereby lowering the cost of production. Currently two direct band gap chalcogenide thin-film technologies, CdTe and CuInGa(S,Se)2 (CIGS), yield the highest reported power conversion efficiencies of 16.5% and 20.3%, respectively. In addition, Cu2ZnSnS4 (CZTS) is one of the most promising chalcogenide thin film photovoltaic absorber materials; with an optimal band gap of about 1.5 eV. More importantly, CZTS consists of abundant and non-toxic elements, so research on CZTS thin-film solar cells has been increasing significantly in recent years. Moreover, Sb2S3 based chalcogenide thin films have been proposed for use in photovoltaic applications. The preparation of chalcogenide thin films solar cells commonly use physical vapour deposition methods including thermal/e-beam evaporation, sputtering, and pulsed laser deposition, electrochemical deposition, spray pyrolysis, solution-based synthesis, followed by the sulfurization or selenization annealing process. In this paper, we report a non-vacuum process, using atmospheric pressure chemical vapour deposition (APCVD), to fabricate chalcogenide thin film solar cell materials as well as transparent conductive oxide (TCO) thin films. The optical, electrical, and structural properties of these materials were characterized by UV-VIS-NIR, four-point probes, SEM, EDX, XRD, Micro-Raman

    Strain engineering in graphene by laser irradiation

    No full text
    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer

    Ontological Complexity and Human Culture

    Get PDF
    Ontologies are being used by information scientists in order to facilitate the sharing of meaningful information. However, computational ontologies are problematic in that they often decontextualize information. The semantic content of information is dependent upon the context in which it exists and the experience through which it emerges. For true semantic interoperability to occur among diverse information systems, within or across domains, information must remain contextualized. In order to bring more context to computational ontologies, we introduce culture as an essential concept for information science. Culture helps to focus our attention on and make meaning of relevant extrapersonal structures and their qualities and dimensions that comprise the context and background of the world. In our approach, culture is integral to the study of semantics and, consequently, the study of ontologies and information technologies. The meaning we make of entities and phenomena in the world is always shaped by our cultural experience. If we understand culture as the emergent interplay of intrapersonal cognitive structures and extrapersonal structures of the world, then the notion of cognitive and cultural schemas becomes essential to understanding ontology and the ways in which we might achieve authentic semantic interoperability among diverse information systems. We explore the nature of ontologies and reconceptualize them as cultural schemas. Our proposal is an alternative to the historical path from philosophical ontology to computational ontologies as one that adheres primarily to the notion of ontology as a categorization and classification system. The obvious implication for ontology as categorization is that there is a single objective world that exists and that it can be described as entirely separate from the person observing it. We draw upon Heidegger’s examination of ontology to ground ontology in a phenomenological perspective, enabling it to remain flexible and adaptable and to accommodate context

    Thermodynamic Forecasts of the Mediterranean Sea Acidification

    Get PDF
    Anthropogenic CO2 is a major driver of the present ocean acidification. This latter is threatening the marine ecosystems and has been identified as a major environmental and economic menace. This study aims to forecast from the thermodynamic equations, the acidification variation (ΔpH) of the Mediterranean waters over the next few decades and beyond this century. In order to do so, we calculated and fitted the theoretical values based upon the initial conditions from data of the 2013 MedSeA cruise. These estimates have been performed both for the Western and for the Eastern basins based upon their respective physical (temperature and salinity) and chemical (total alkalinity and total inorganic carbon) properties. The results allow us to point out four tipping points, including one when the Mediterranean Sea waters would become acid (pH<7). In order to provide an associated time scale to the theoretical results, we used two of the IPCC (2007) atmospheric CO2 scenarios. Under the most optimistic scenario of the “Special Report: Emissions Scenarios” (SRES) of the IPCC (2007), the results indicate that in 2100, pH may decrease down to 0.245 in the Western basin and down to 0.242 in the Eastern basin (compared to the pre-industrial pH). Whereas for the most pessimistic SRES scenario of the IPCC (2007), the results for the year 2100, forecast a pH decrease down to 0.462 and 0.457, for the Western and for the Eastern basins, respectively. Acidification, which increased unprecedentedly in recent years, will rise almost similarly in both Mediterranean basins only well after the end of this century. These results further confirm that both basins may become undersaturated (< 1) with respect to calcite and aragonite (at the base of the mixed layer depth), only in the far future (in a few centuries)

    Crystallisation study of the Cu<sub>2</sub>ZnSnS<sub>4</sub> chalcogenide material for solar applications

    No full text
    Second generation thin-film chalcogenide materials, in particular CuInGa(S,Se)2 (CIGS) and CdTe, have been among the most promising and quickly became commercial candidates for large-scale PV manufacturing. These materials offer stable and efficient (above 10%) photovoltaic modules fabricated by scalable thin-film technologies and cell efficiencies above 20 % (CIGS). Indium-free kesterite-related materials such as Cu2ZnSnS4 have attracted significant research interest due to their similar properties to CIGS. In these materials, indium is replaced with earth-abundant zinc and tin metals. The quaternary semiconductor Cu2ZnSnS4(CZTS) is a relatively new photovoltaic material and is expected to be interesting for environmentally amenable solar cells, as its constituents are nontoxic and abundant in the Earth's crust. The CZTS thin films show p-type conductivity, a band gap of 1.44–1.51 eV that is ideal to achieve the highest solar-cell conversion efficiency, and relatively high optical absorption in the visible light range

    Alternative antibody for the detection of CA19-9 antigen: a European multicenter study for the evaluation of the analytical and clinical performance of the Access (R) GI Monitor assay on the UniCel (R) Dxl 800 Immunoassay System

    Get PDF
    Background: Gastrointestinal cancer antigen CA19-9 is known as a valuable marker for the management of patients with pancreatic cancer. Methods: The analytical and clinical performance of the Access(R) GI Monitor assay (Beckman Coulter) was evaluated on the UniCel(R) Dxl 800 Immunoassay System at five different European sites and compared with a reference method, defined as CA19-9 on the Elecsys System (Roche Diagnostics). Results: Total imprecision (%CV) of the GI Monitor ranged between 3.4% and 7.7%, and inter-laboratory reproducibility between 3.6% and 4.0%. Linearity upon dilution showed a mean recovery of 97.4% (SD+7.2%). Endogenous interferents had no influence on GI Monitor levels (mean recoveries: hemoglobin 103%, bilirubin 106%, triglycerides 106%). There was no high-dose hook effect up to 115,000 kU/L. Clinical performance investigated in sera from 1811 individuals showed a good correlation between the Access' GI Monitor and Elecsys CA19-9 (R = 0.959, slope = 1.004, intercept +0.17). GI Monitor serum levels were low in healthy individuals (n = 267, median = 6.0 kU/L, 95th percentile = 23.1 kU/L), higher in individuals with various benign diseases (n = 550, medians = 5.8-13.4 kU/L, 95th percentiles = 30.1-195.5 kU/L) and even higher in individuals suffering from various cancers (n = 995, medians = 8.4-233.8 kU/L, 95th percentiles = 53.7-13,902 kU/L). Optimal diagnostic accuracy for cancer detection against the relevant benign control group by the GI Monitor was found for pancreatic cancer {[}area under the curve (AUC) 0.83]. Results for the reference CA19-9 assay were comparable (AUC 0.85). Conclusions: The Access(R) GI Monitor provides very good methodological characteristics and demonstrates an excellent analytical and clinical correlation with the Elecsys CA19-9. The GI Monitor shows the best diagnostic accuracy in pancreatic cancer. Our results also suggest a clinical value of the GI Monitor in other cancers

    Ultra low power consuming thermally stable sulphide materials for resistive and phase change memristive application

    No full text
    The use of conventional chalcogenide alloys in rewritable optical disks and the latest generation of electronic memories (phase change and nano-ionic memories) has provided clear commercial and technological advances for the field of data storage, by virtue of the many well-known attributes, in particular scaling, cycling endurance and speed, that these chalcogenide materials offer. While the switching power and current consumption of established germanium antimony telluride based phase change memory cells are a major factor in chip design in real world applications, the thermal stability and high on-state power consumption of these device can be a major obstacle in the path to full commercialization. In this work we describe our research in material discovery and prototype device fabrication and characterization, which through high throughput screening has demonstrated thermally stable, low current consuming chalcogenides for applications in PCRAM and oxygen doped chalcogenides for RRAM which significantly outperform the current contenders
    • …
    corecore