1,539 research outputs found

    Pseudoclassical Model of Spinning Particle with Anomalous Magnetic Momentum

    Full text link
    A generalization of the pseudoclassical action of a spinning particle in the presence of an anomalous magnetic momentum is given. The action is written in reparametrization and supergauge invariant form. The Dirac quantization, based on the Hamiltonian analyses of the model, leads to the Dirac-Pauli equation for a particle with an anomalous magnetic momentum in an external electromagnetic field. Due to the structure of first-class constraints in that case, the Dirac quantization demands for consistency to take into account an operators ordering problem.Comment: 9 pages, IFUSP/P-100

    Homogeneous cosmologies and the Maupertuis-Jacobi principle

    Get PDF
    A recent work showing that homogeneous and isotropic cosmologies involving scalar fields are equivalent to the geodesics of certain effective manifolds is generalized to the non-minimally coupled and anisotropic cases. As the Maupertuis-Jacobi principle in classical mechanics, such result permits us to infer some dynamical properties of cosmological models from the geometry of the associated effective manifolds, allowing us to go a step further in the study of cosmological dynamics. By means of some explicit examples, we show how the geometrical analysis can simplify considerably the dynamical analysis of cosmological models.Comment: 5 page

    Superinflation, quintessence, and the avoidance of the initial singularity

    Get PDF
    We consider the dynamics of a spatially flat universe dominated by a self-interacting nonminimally coupled scalar field. The structure of the phase space and complete phase portraits for the conformal coupling case are given. It is shown that the non-minimal coupling modifies drastically the dynamics of the universe. New cosmological behaviors are identified, including superinflation (H˙>0\dot{H}>0), avoidance of big bang singularities through classical birth of the universe from empty Minkowski space, and spontaneous entry into and exit from inflation. The relevance of this model to the description of quintessence is discussed.Comment: RevTex, 10 pages, 4 figures, To appear in the proceedings of the 5th Peyresq meetin

    Spinless Matter in Transposed-Equi-Affine Theory of Gravity

    Full text link
    We derive and discus the equations of motion for spinless matter: relativistic spinless scalar fields, particles and fluids in the recently proposed by A. Saa model of gravity with covariantly constant volume with respect to the transposed connection in Einstein-Cartan spaces. A new interpretation of this theory as a theory with variable Plank "constant" is suggested. We show that the consistency of the semiclassical limit of the wave equation and classical motion dictates a new definite universal interaction of torsion with massive fields.Comment: 29 pages, latex, no figures. New Section on semiclassical limit of wave equation added; old references rearranged; new references, remarks, comments, and acknowledgments added; typos correcte

    Volume elements and torsion

    Full text link
    We reexamine here the issue of consistency of minimal action formulation with the minimal coupling procedure (MCP) in spaces with torsion. In Riemann-Cartan spaces, it is known that a proper use of the MCP requires that the trace of the torsion tensor be a gradient, Tμ=μθT_\mu=\partial_\mu\theta, and that the modified volume element τθ=eθgdx1...dxn\tau_\theta = e^\theta \sqrt{g} dx^1\wedge...\wedge dx^n be used in the action formulation of a physical model. We rederive this result here under considerably weaker assumptions, reinforcing some recent results about the inadequacy of propagating torsion theories of gravity to explain the available observational data. The results presented here also open the door to possible applications of the modified volume element in the geometric theory of crystalline defects.Comment: Revtex, 8 pages, 1 figure. v2 includes a discussion on λ\lambda-symmetr

    Quantum effects and superquintessence in the new age of precision cosmology

    Full text link
    Recent observations of Type Ia supernova at high redshifts establish that the dark energy component of the universe has (a probably constant) ratio between pressure and energy density w=p/ρ=1.02(0.19+0.13)w=p/\rho=-1.02(^{+0.13}_{-0.19}). The conventional quintessence models for dark energy are restricted to the range 1w<0-1\le w < 0, with the cosmological constant corresponding to w=1w=-1. Conformally coupled quintessence models are the simplest ones compatible with the marginally allowed superaccelerated regime (w<1w<-1). However, they are known to be plagued with anisotropic singularities. We argue here that the extension of the classical approach to the semiclassical one, with the inclusion of quantum counterterms necessary to ensure the renormalization, can eliminate the anisotropic singularities preserving the isotropic behavior of conformally coupled superquintessence models. Hence, besides of having other interesting properties, they are consistent candidates to describe the superaccelerated phases of the universe compatible with the present experimental data.Comment: 7 pages. Essay selected for "Honorable Mention" in the 2004 Awards for Essays on Gravitation, Gravity Research Foundatio

    Neutron star in presence of torsion-dilaton field

    Full text link
    We develop the general theory of stars in Saa's model of gravity with propagating torsion and study the basic stationary state of neutron star. Our numerical results show that the torsion force decreases the role of the gravity in the star configuration leading to significant changes in the neutron star masses depending on the equation of state of star matter. The inconsistency of the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments is discussed.Comment: 29 pages, latex, 24 figures, final version. Added: 1)comments on different possible mass definitions; 2)new sections: a)the inconsistency of the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments; b)stability analysis via catastrophe theory; 3)new figers added and some figures replaced. 4)new reference

    Frames of reference in spaces with affine connections and metrics

    Full text link
    A generalized definition of a frame of reference in spaces with affine connections and metrics is proposed based on the set of the following differential-geometric objects: (a) a non-null (non-isotropic) vector field, (b) the orthogonal to the vector field sub space, (c) an affine connection and the related to it covariant differential operator determining a transport along the given non-null vector filed. On the grounds of this definition other definitions related to the notions of accelerated, inertial, proper accelerated and proper inertial frames of reference are introduced and applied to some mathematical models for the space-time. The auto-parallel equation is obtained as an Euler-Lagrange's equation. Einstein's theory of gravitation appears as a theory for determination of a special frame of reference (with the gravitational force as inertial force) by means of the metrics and the characteristics of a material distribution. PACS numbers: 0490, 0450, 1210G, 0240VComment: 17 pages, LaTeX 2

    Spin 1 fields in Riemann-Cartan space-times "via" Duffin-Kemmer-Petiau theory

    Get PDF
    We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.Comment: 8 pages, no figures, revtex. Dedicated to Professor Gerhard Wilhelm Bund on the occasion of his 70th birthday. To appear in Gen. Rel. Grav. Equations numbering corrected. References update
    corecore