18 research outputs found

    Endoplasmic Reticulum-Dependent Redox Reactions Control Endoplasmic Reticulum-Associated Degradation and Pathogen Entry

    Full text link
    Abstract Significance: Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host?pathogen interactions. Recent Advances: Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. Critical Issues: The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. Future Directions: How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions. Antioxid. Redox Signal. 16, 809?818.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98492/1/ars%2E2011%2E4425.pd

    Pathogen Proteins Eliciting Antibodies Do Not Share Epitopes with Host Proteins: A Bioinformatics Approach

    Get PDF
    The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around

    Expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans

    Full text link
    The expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans ATCC 25175 was studied using resting cells incubated in the presence of 14 C-xylitol. The expulsion appeared to be a two-step process: xylitol 5-phosphate was first hydrolyzed to xylitol and inorganic phosphate, and the xylitol was subsequently expelled from the cells. The dephosphorylation step appeared to be energy-requiring and it was most likely associated with a phosphatase which was active on xylitol 5-phosphate. Two to three successive cultivations of the cells in the presence of 6% xylitol increased this enzyme activity 4.3-fold. These results are in accordance with the presence of an energy-dependent xylitol 5-phosphate cycle in S. mutans , which is regulated by exogenous xylitol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71776/1/j.1600-0722.1990.tb00949.x.pd
    corecore