1,558 research outputs found

    The evaluation of the bone graft survival status in titanium cervical cages by radionuclide bone CT scan

    Get PDF
    To find a better way to evaluate the bone graft survival status in cervical cages, forty-one patients suffering from one-level cervical spondylosis were enrolled in this study. All underwent anterior cervical decompression and fusion with titanium cage and plate. When followed up, another 21 patients were confirmed as one-level cervical spondylosis without operation and were enrolled as control group. "Bolus" injection of radioactive 99mTc methylene diphosphonate (99mTc-MDP) with a dose of 25 ~ 30 mCi was performed through cubital vein, and radionuclide distribution images of cervical spine were obtained by single photon emission computed tomography/computed tomography (SPECT/CT). In sagittal view, bone graft was positioned accurately. By “region of interest” (ROI) technique, the same regions in bone graft and thoracic vertebra with the same level of suprasternal fossa were selected. Radioactive count ratio was then obtained. In the control group, “bone graft” was chosen on the inferior vertebra of the lesion segment, and the ratio was similarly gotten. Statistical difference was shown between bone graft group and control group by t test (t = 2.713, P < 0.05). The bone graft survival rate was 100% by SPECT/CT and bony fusion rate was 92.7% by CT scan. It indicated that in all bony fusion cases, bone graft survived; however, the bone survival was not surely together with bony fusion.Key words: Bone graft, titanium cervical cage, radionuclide bone CT

    Effects of natural covers on soil evaporation of the shelterbelt along the Tarim Desert Highway

    Get PDF
    The control of soil evaporation is one of important approaches to save water. The artificially simulated evaporation experiments have been conducted in the hinterland of the Taklimakan Desert to reveal the effects of the natural covers on the soil evaporation of the Tarim Desert Highway shelterbelt as well as provide some insights in the efficient utilization of water resources and optimization of irrigation systems. The results showed that (1) All the covers, including the sand deposit, the salt crust, the litter, the sand-litter mixed layer and so on, can significantly inhibit the soil water evaporation. Specifically, the daily evaporation, the total evaporation, and the evaporation rate in covered sands were much smaller than that of sands without cover. The cover inhibition effects increased with the cover thickness. Particularly, the soil evaporation of the covered sands was less affected by external and internal factors than that of the bare sands. Moreover, the variation of daily evaporation of covered sands was smaller than that of bare sands. The cumulative evaporation varied linearly with time in the covered sands whereas it varied logarithmically in the bare sands. In addition, the soil evaporation in the bare sands showed significantly different characteristics in the early and late stages of the evaporation. (2) All the covers exhibited the significant inhibiting effect on the soil evaporation, and the inhibition efficiency increased logarithmically with the cover thickness. However, as the cover thickness was above a certain value, the increase in the inhibition efficiency was slow. Particularly, at a cover thickness of 2 cm, there was no obvious difference in the inhibition efficiency among all kinds of covers. The maximum inhibition efficiency as calculated from the daily evaporation on the first day of irrigation was: sand-litter mixed layer (79.92%) > litter layer (78.96%) > salt crust (75.58%) > sand bed (74.11%), whereas the average inhibiting efficiency as calculated from the cumulative soil evaporation at the end of an irrigation cycle (the fourth day) was: salt crust (67.78%) > sand-litter mixed layer (66.72%) > sand deposit (63.28%) > litter layer (61.74%)

    Topographical changes of ground surface affected by the shelterbelt along the Tarim Desert Highway

    Get PDF
    To study the effects of sand protection project on modern aeolian landform, the types, distribution, and intensity of topographical changes of the ground surface affected by the shelterbelt along the Tarim Desert Highway were determined by measuring the deflation and deposition of sand surface in the Tazhong area located in the hinterland of the Taklimakan Desert. The results showed that (1) the newly-formed landform in sand protection systems is dominated by aeolian deposition including the small-scale Nabkha Dunes, the medium-scale sheet-like sand deposition and the large-scale ridge-like sand deposition. To some degree, aeolian deflation landform can also be formed in the open space in the shelterbelt. Furthermore, it is difficult for aeolian deflation landform to develop in a large scale in the interdunes. However, aeolian deflation landform can be developed in a large-scale on the windward slope of secondary dunes in longitudinal complex sand ridges; (2) on the windward side of the sand protection systems, both the morphology and strike of dwarf mobile dunes in the interdunes are changed by the sand-obstructing forest belts and the ridge-like sand deposition around it. The windward slope of the ridge-like deposition around the sand-obstructing forest belt forms a stable ground surface. After being damaged by forward-moving dunes in a short period, the ground surface is recovered gradually; (3) on the leeward side of the sand protection systems, aeolian deflations are formed widely. Particularly, the deflation depression is formed in the interdunes. In addition, the dunes in the region with highly topographic relief are cut flat by aeolian deflations; thereafter its relief of topography is reduced. The above analysis indicates that shelterbelts have obvious effects on the windward wind-sand flux in terms of dissipating energy and intercepting sand. With the recovery of wind velocity on the leeward side of the sand protection systems, the wind-sand flux gradually tends to be unsaturated; therefore the sand surface deflation is formed

    Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway

    Get PDF
    Through the systematic field survey and observations, the factor quantification as well as setting the criteria, the sand disaster-forming environment along the Tarim Desert Highway can be divided into four grades by the classification and regionalization based on fuzzy mathematics. The length of the regions with significant sand disaster accounted for 37.1% of the total highway length. Particularly, the area along the Tarim Desert Highway, based on the sand disaster-forming environment classification as well as the difference in the five basic landform units along the highway, combined with the difference of wind regime, can be divided into five regions, in which the length of the regions suffering severe sand damage occupied 64.3% of the total highway length. In addition, the index of disaster formation grade along the highway decreased from north to south, showing a repeated spatial pattern in small length scales

    Giant Electroresistance in Edge Metal-Insulator-Metal Tunnel Junctions Induced by Ferroelectric Fringe Fields

    Get PDF
    An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architectureope

    Molecular cloning and expression profiling of a chalcone synthase gene from hairy root cultures of Scutellaria viscidula Bunge

    Get PDF
    A cDNA encoding chalcone synthase (CHS), the key enzyme in flavonoid biosynthesis, was isolated from hairy root cultures of Scutellaria viscidula Bunge by rapid amplification of cDNA ends (RACE). The full-length cDNA of S. viscidula CHS, designated as Svchs (GenBank accession no. EU386767), was 1649 bp with a 1170 bp open reading frame (ORF) that corresponded to a deduced protein of 390 amino acid residues, a calculated molecular mass of 42.56 kDa and a theoretical isoelectric point (pI) of 5.79. Multiple sequence alignments showed that SvCHS shared high homology with CHS from other plants. Functional analysis in silico indicated that SvCHS was a hydrophilic protein most likely associated with intermediate metabolism. The active sites of the malonyl-CoA binding motif, coumaroyl pocket and cyclization pocket in CHS of Medicago sativa were also found in SvCHS. Molecular modeling indicated that the secondary structure of SvCHS contained mainly α-helixes and random coils. Phylogenetic analysis showed that SvCHS was most closely related to CHS from Scutellaria baicalensis. In agreement with its function as an elicitor-responsive gene, the expression of Svchs was induced and coordinated by methyl jasmonate. To our knowledge, this is the first report to describe the isolation and expression of a gene from S. viscidula

    Electrical Stimulation to Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect

    Get PDF
    BACKGROUND: Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. METHODOLOGY/FINDINGS: In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. CONCLUSIONS/SIGNIFICANCE: Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect
    • 

    corecore