23 research outputs found
TGFbeta induces apoptosis and EMT in primary mouse hepatocytes independently of p53, p21Cip1 or Rb status
Melville Trust for the Care and Cure of Cancer to SP and SS.Background: TGF beta has pleiotropic effects that range from regulation of proliferation and apoptosis to morphological changes and epithelial-mesenchymal transition (EMT). Some evidence suggests that these effects may be interconnected. We have recently reported that P53, P21(Cip1) and pRB, three critical regulators of the G1/S transition are variably involved in TGF beta-induced cell cycle arrest in hepatocytes. As these proteins are also involved in the regulation of apoptosis in many circumstances, we investigated their contribution to other relevant TGF beta-induced effects, namely apoptosis and EMT, and examined how the various processes were interrelated. Methods: Primary mouse hepatocytes deficient in p53, p21 and/or Rb, singly or in combination were treated with TGF beta for 24 to 96 hours. Apoptosis was quantified according to morphology and by immunostaining for cleavedcapsase 3. Epithelial and mesenchymal marker expression was studied using immunocytochemistry and real time PCR. Results: We found that TGF beta similarly induced morphological changes regardless of genotype and independently of proliferation index or sensitivity to inhibition of proliferation by TGF beta. Morphological changes were accompanied by decrease in E-cadherin and increased Snail expression but the mesenchymal markers (N-cadherin, SMA alpha and Vimentin) studied remained unchanged. TGF beta induced high levels of apoptosis in p53-/-, Rb-/-, p21(cip1)-/- and control hepatocytes although with slight differences in kinetics. This was unrelated to proliferation or changes in morphology and loss of cell-cell adhesion. However, hepatocytes deficient in both p53 and p21(cip1)were less sensitive to TGF beta-induced apoptosis. Conclusion: Although p53, p21(Cip1) and pRb are well known regulators of both proliferation and apoptosis in response to a multitude of stresses, we conclude that they are critical for TGF beta-driven inhibition of hepatocytes proliferation, but only slightly modulate TGF beta-induced apoptosis. This effect may depend on other parameters such as proliferation and the presence of other regulatory proteins as suggested by the consequences of p53, p21(Cip1) double deficiency. Similarly, p53, p21(Cip1) and pRB deficiency had no effect on the morphological changes and loss of cell adhesion which is thought to be critical for metastasis. This indicates that possible association of these genes with metastasis potential would be unlikely to involve TGF beta-induced EMT.Publisher PDFPeer reviewe
Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest
<p>Abstract</p> <p>Background</p> <p>TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how <it>Rb</it>-deficiency would affect responses to TGFβ-induced cell cycle arrest.</p> <p>Results</p> <p>Primary hepatocytes isolated from <it>Rb-floxed </it>mice were infected with an adenovirus expressing CRE-recombinase to delete the <it>Rb </it>gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16<sup>INK4A </sup>and P21<sup>Cip </sup>and reduction of E2F activity. In <it>Rb</it>-null hepatocytes, cMYC activity decreased slightly but P16<sup>INK4A </sup>was not activated and the great majority of cells continued cycling. <it>Rb </it>is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some <it>Rb</it>-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21<sup>Cip1 </sup>and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of <it>p53 </it>and <it>p21</it><sup><it>Cip1</it></sup>. Hepatocytes deficient in <it>p53 or p21</it><sup><it>Cip1 </it></sup>showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21<sup>Cip </sup>and P53 work through the same pathway to regulate G1/S in response to TGFβ. In <it>Rb</it>-deficient cells however, <it>p53 </it>but not <it>p21</it><sup><it>Cip </it></sup>deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity.</p> <p>Conclusion</p> <p>The present results show that otherwise genetically normal hepatocytes with disabled <it>p53</it>, <it>p21</it><sup><it>Cip1 </it></sup>or <it>Rb </it>genes respond less well to the antiproliferative effects of TGFβ. As the function of these critical cellular proteins can be impaired by common causes of chronic liver disease and HCC, including viral hepatitis B and C proteins, we suggest that disruption of pRb function, and to a lesser extend P21<sup>Cip1 </sup>and P53 in hepatocytes may represent an additional new mechanism of escape from TGFβ-growth-inhibition in the inflammatory milieu of chronic liver disease and contribute to cancer development.</p
Array-Comparative Genomic Hybridization Reveals Loss of SOCS6 Is Associated with Poor Prognosis in Primary Lung Squamous Cell Carcinoma
BACKGROUND: Primary tumor recurrence commonly occurs after surgical resection of lung squamous cell carcinoma (SCC). Little is known about the genes driving SCC recurrence. METHODS: We used array comparative genomic hybridization (aCGH) to identify genes affected by copy number alterations that may be involved in SCC recurrence. Training and test sets of resected primary lung SCC were assembled. aCGH was used to determine genomic copy number in a training set of 62 primary lung SCCs (28 with recurrence and 34 with no evidence of recurrence) and the altered copy number of candidate genes was confirmed by quantitative PCR (qPCR). An independent test set of 72 primary lung SCCs (20 with recurrence and 52 with no evidence of recurrence) was used for biological validation. mRNA expression of candidate genes was studied using qRT-PCR. Candidate gene promoter methylation was evaluated using methylation microarrays and Sequenom EpiTYPER analysis. RESULTS: 18q22.3 loss was identified by aCGH as being significantly associated with recurrence (p = 0.038). Seven genes within 18q22.3 had aCGH copy number loss associated with recurrence but only SOCS6 copy number was both technically replicated by qPCR and biologically validated in the test set. SOCS6 copy number loss correlated with reduced mRNA expression in the study samples and in the samples with copy number loss, there was a trend for increased methylation, albeit non-significant. Overall survival was significantly poorer in patients with SOCS6 loss compared to patients without SOCS6 loss in both the training (30 vs. 43 months, p = 0.023) and test set (27 vs. 43 months, p = 0.010). CONCLUSION: Reduced copy number and mRNA expression of SOCS6 are associated with disease recurrence in primary lung SCC and may be useful prognostic biomarkers
Effect of Alkylation on the Cellular Uptake of Polyethylene Glycol-Coated Gold Nanoparticles
Alkyl groups (C<sub><i>n</i></sub>H<sub>2<i>n</i>+1</sub>) are prevalent
in engineered bionanomaterials used for many
intracellular applications, yet how alkyl groups dictate the interactions
between nanoparticles and mammalian cells remains incomprehensively
investigated. In this work, we report the effect of alkylation on
the cellular uptake of densely polyethylene glycol-coated nanoparticles,
which are characterized by their limited entry into mammalian cells.
Specifically, we prepare densely PEGylated gold nanoparticles that
bear alkyl chains of varying carbon chain lengths (<i>n</i>) and loading densities (termed “alkyl-PEG-AuNPs”),
followed by investigating their uptake by Kera-308 keratinocytes.
Strikingly, provided a modest alkyl mass percentage of 0.2% (2 orders
of magnitude lower than that of conventional lipid-based NPs) in their
PEG shells, dodecyl-PEG-AuNPs (<i>n</i> = 12) and octadecyl-PEG-AuNPs
(<i>n</i> = 18) can enter Kera-308 cells 30-fold more than
methoxy-PEG-AuNPs (no alkyl groups) and hexyl-PEG-AuNPs (<i>n</i> = 6) after 24 h of incubation. Such strong dependence on <i>n</i> is valid for all serum concentrations considered (even
under serum-free conditions), although enhanced serum levels can trigger
the agglomeration of alkyl-PEG-AuNPs (without permanent aggregation
of the AuNP cores) and can attenuate their cellular uptake. Additionally,
alkyl-PEG-AuNPs can rapidly enter Kera-308 cells <i>via</i> the filipodia-mediated pathway, engaging the tips of membrane protrusions
and accumulating within interdigital folds. Most alkyl-PEG-AuNPs adopt
the “endo-lysosomal” route of trafficking, but ∼15%
of them accumulate in the cytosol. Regardless of intracellular location,
alkyl-PEG-AuNPs predominantly appear as individual entities after
24 h of incubation. Our work offers insights into the incorporation
of alkyl groups for designing bionanomaterials for cellular uptake
and cytosolic accumulation with intracellular stability