84 research outputs found

    The docking protein p130Cas regulates cell sensitivity to proteasome inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The focal adhesion protein p130Cas (Cas) activates multiple intracellular signaling pathways upon integrin or growth factor receptor ligation. Full-length Cas frequently promotes cell survival and migration, while its C-terminal fragment (Cas-CT) produced upon intracellular proteolysis is known to induce apoptosis in some circumstances. Here, we have studied the putative role of Cas in regulating cell survival and death pathways upon proteasome inhibition.</p> <p>Results</p> <p>We found that Cas-/- mouse embryonic fibroblasts (MEFs), as well as empty vector-transfected Cas-/- MEFs (Cas-/- (EV)) are significantly resistant to cell death induced by proteasome inhibitors, such as MG132 and Bortezomib. As expected, wild-type MEFs (WT) and Cas-/- MEFs reconstituted with full-length Cas (Cas-FL) were sensitive to MG132- and Bortezomib-induced apoptosis that involved activation of a caspase-cascade, including Caspase-8. Cas-CT generation was not required for MG132-induced cell death, since expression of cleavage-resistant Cas mutants effectively increased sensitivity of Cas-/- MEFs to MG132. At the present time, the domains in Cas and the downstream pathways that are required for mediating cell death induced by proteasome inhibitors remain unknown. Interestingly, however, MG132 or Bortezomib treatment resulted in activation of autophagy in cells that lacked Cas, but not in cells that expressed Cas. Furthermore, autophagy was found to play a protective role in Cas-deficient cells, as inhibition of autophagy either by chemical or genetic means enhanced MG132-induced apoptosis in Cas-/- (EV) cells, but not in Cas-FL cells. Lack of Cas also contributed to resistance to the DNA-damaging agent Doxorubicin, which coincided with Doxorubicin-induced autophagy in Cas-/- (EV) cells. Thus, Cas may have a regulatory role in cell death signaling in response to multiple different stimuli. The mechanisms by which Cas inhibits induction of autophagy and affects cell death pathways are currently being investigated.</p> <p>Conclusion</p> <p>Our study demonstrates that Cas is required for apoptosis that is induced by proteasome inhibition, and potentially by other death stimuli. We additionally show that Cas may promote such apoptosis, at least partially, by inhibiting autophagy. This is the first demonstration of Cas being involved in the regulation of autophagy, adding to the previous findings by others linking focal adhesion components to the process of autophagy.</p

    Neural protection by naturopathic compoundsβ€”an example of tetramethylpyrazine from retina to brain

    Get PDF
    Given the advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50Β mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague–Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer’s disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, it would not take much preclinical data to justify bringing such therapeutic compounds to clinical trials in humans

    Crucial role of calbindin-D-28k in the pathogenesis of Alzheimer&apos;s disease mouse model

    No full text
    Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO . 5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid b-peptide (Ab) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogenactivated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis.1261sciescopu

    Monthly metabolic changes and PLS prediction of carotenoid content of citrus fruit by combined Fourier transform infrared spectroscopy and quantitative HPLC analysis

    No full text
    This work examined the potential of Fourier transform infrared spectroscopy (FT-IR) spectroscopy and high-performance liquid chromatography (HPLC) analysis in evaluating metabolic changes during ripening of citrus fruit. Further, the feasibility of prediction modeling of carotenoid content by multivariate statistical analysis combined with FT-IR spectral and HPLC data was examined without additional HPLC analysis. FT-IR spectra of citrus (Citrus unshiu Marc. cv. Miyagawa) fruit peels and flesh were measured at monthly intervals of fruit development. Quantification of carotenoids from the fruit was confirmed by quantitative HPLC analysis. The most remarkable evolution of FT-IR spectral decrease during ripening of fruit was found in the amide region (1500–1700 cmβˆ’1), whereas there was an increase in the carbohydrate region (1000–1200 cmβˆ’1). The evolution of different FT-IR spectral bands was related to fruit constituents, including organic acids, carbohydrates, carotenoids, and phenolic compounds. Significant qualitative changes in the carotenoid pattern included an increase in Ξ²-cryptoxanthin and decrease in lutein content during citrus fruit development. The content of antheraxanthin (R2 = 0.9117), Ξ²-carotene (R2 = 0.8816), Ξ²-cryptoxanthin (R2 = 0.8856), and violaxanthin (R2 = 0.7305) from peels of citrus fruit could be predicted from FT-IR spectral data using partial least square (PLS) regression modeling. Considering the results of PLS-discriminant analysis (PLS-DA) of FT-IR spectral data and PLS regression modeling of carotenoid content, FT-IR in combination with multivariate analysis enables not only discrimination of metabolic variation during fruit development, but also prediction of carotenoid content from citrus fruit. Β© 2015, Korean Society for Plant Biotechnology and Springer Japan.
    • …
    corecore