3,347 research outputs found
線維化を伴う骨髄異形成症候群患者の骨髄ではネスチン陽性シュワン細胞様構造が異常増殖している
筑波大学 (University of Tsukuba)201
Experimental study on strain distribution in externally bonded FRP for shear strengthening of RC beams
2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
線維化を伴う骨髄異形成症候群患者の骨髄ではネスチン陽性シュワン細胞様構造が異常増殖している
この博士論文は内容の要約のみの公開(または一部非公開)になっています筑波大学 (University of Tsukuba)201
Improved mitochondrial amino acid substitution models for metazoan evolutionary studies
Abstract Background Amino acid substitution models play an essential role in inferring phylogenies from mitochondrial protein data. However, only few empirical models have been estimated from restricted mitochondrial protein data of a hundred species. The existing models are unlikely to represent appropriately the amino acid substitutions from hundred thousands metazoan mitochondrial protein sequences. Results We selected 125,935 mitochondrial protein sequences from 34,448 species in the metazoan kingdom to estimate new amino acid substitution models targeting metazoa, vertebrates and invertebrate groups. The new models help to find significantly better likelihood phylogenies in comparison with the existing models. We noted remarkable distances from phylogenies with the existing models to the maximum likelihood phylogenies that indicate a considerable number of incorrect bipartitions in phylogenies with the existing models. Finally, we used the new models and mitochondrial protein data to certify that Testudines, Aves, and Crocodylia form one separated clade within amniotes. Conclusions We introduced new mitochondrial amino acid substitution models for metazoan mitochondrial proteins. The new models outperform the existing models in inferring phylogenies from metazoan mitochondrial protein data. We strongly recommend researchers to use the new models in analysing metazoan mitochondrial protein data
A study of Inx Ga1-x N growth by reflection high-energy electron diffraction
Epitaxial growth of Inx Ga1-x N alloys on GaN (0001) by plasma-assisted molecular-beam epitaxy is investigated using the in situ reflection high-energy electron-diffraction (RHEED) technique. Based on RHEED pattern changes over time, the transition of growth mode from two-dimensional (2D) nucleation to three-dimensional islanding is studied for various indium compositions. RHEED specular-beam intensity oscillations are recorded during the 2D wetting-layer growth, and the dependences of the oscillation period/frequency on the substrate temperature and source flux are established. By measuring the spacing between diffraction spots in RHEED, we also estimated indium composition, x, in alloys grown under different flux combinations. Incorporation coefficients of both gallium and indium are derived. Possible surface segregation of indium atoms is finally examined. © 2005 American Institute of Physics.published_or_final_versio
Coherent and dislocated three-dimensional islands of Inx Ga1-x N self-assembled on GaN(0001) during molecular-beam epitaxy
Molecular-beam epitaxy of Inx Ga1-x N alloy on GaN(0001) is investigated by scanning tunneling microscopy. The Stranski-Krastanov mode of growth of the alloy is followed, where the newly nucleated three-dimensional islands are initially coherent to the underlying GaN and the wetting layer, but then become dislocated when grown bigger than about 20 nm in the lateral dimension. Two types of islands show different shapes, where the coherent ones are cone shaped and the dislocated ones are pillar like, having flat-tops. Within a certain range of material coverage, the surface contains both coherent and dislocated islands, showing an overall bimodal island-size distribution. The continued deposition on such surfaces leads to the pronounced growth of dislocated islands, whereas the sizes of the coherent islands change very little. © 2005 The American Physical Society.published_or_final_versio
Growth mode and strain evolution during InN growth on GaN(0001) by molecular-beam epitaxy
The plasma-assisted molecular-beam epitaxy technique was used to study the epitaxial growth of InN on GaN. A relationship between film growth mode and the deposition condition was established by combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). The sustained RHEED intensity oscillations were recorded for 2D growth while 2D nucleation islands were revealed by STM. Results showed less than three oscillation periods for 3 D growth, indicating the Strnski-Krastanov (SK) growth mode of the film.published_or_final_versio
FLU, an amino acid substitution model for influenza proteins
Abstract Background The amino acid substitution model is the core component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid substitution models have been estimated from large and diverse protein databases, they remain inappropriate for analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive studies of these dangerous viruses. We propose an influenza-specific amino acid substitution model to enhance the understanding of the evolution of influenza viruses. Results A maximum likelihood approach was applied to estimate an amino acid substitution model (FLU) from ~113, 000 influenza protein sequences, consisting of ~20 million residues. FLU outperforms 14 widely used models in constructing maximum likelihood phylogenetic trees for the majority of influenza protein alignments. On average, FLU gains ~42 log likelihood points with an alignment of 300 sites. Moreover, topologies of trees constructed using FLU and other models are frequently different. FLU does indeed have an impact on likelihood improvement as well as tree topologies. It was implemented in PhyML and can be downloaded from ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU or included in PhyML 3.0 server at http://www.atgc-montpellier.fr/phyml/. Conclusions FLU should be useful for any influenza protein analysis system which requires an accurate description of amino acid substitutions.</p
InN Island shape and its dependence on growth condition of molecular-beam epitaxy
The three-dimensional (3D) island shapes of the InN and its dependence on growth conditions of molecular-beam epitaxy (MBE) were analyzed. The islands were dislocated and the strain in an island depended on its size. The pillar-shaped islands with low aspect ratios represented the equilibrium shape, and the pyrimidal islands with higher aspect ratios were limited by kinetics during MBE growth. The decreasing trend of island aspect ratio with respect to island size was attributed to gradual relaxation of residual strain in dislocated islands.published_or_final_versio
A Comparative Study on Process Potentials for Frictional Stir- and Electric Hot-assisted Incremental Sheet Forming
Abstract Incremental sheet forming (ISF), as an advanced forming technique, has received increasing interest from both academia and industry due to its improved formability, greater process flexibility and reduced energy consumption in its life cycle. However, with the growing application of lightweight alloys with very limited material elongation, conventional ISF inevitably encounters challenges in processing these alloys at room temperature, especially in forming magnesium and titanium alloys. Therefore, heat-assisted ISF techniques have been proposed to further enhance material formability at elevated temperatures. In this work, two heat-assisted ISF approaches, frictional stir- and electric hot- assisted ISF, have been employed to process the hard-to-form materials in terms of the flexibility and local dynamic heating. The temperature evolution and corresponding forming force at different feed rates of these two techniques, is investigated in detail to build up a processing window. In addition, process capabilities are compared by forming different geometrical shapes of magnesium alloy AZ31B of 1.4 mm sheet thickness. The investigation results show the pros and cons of frictional stir- and electric hot- assisted ISF. Frictional stir-assisted ISF is more efficient than electric hot-assisted ISF under current experimental results. However, electric hot-assisted ISF has faster heating rate which makes this technique less dependent on the component geometry
- …