645 research outputs found
Strong Electron-Phonon Coupling in Superconducting MgB: A Specific Heat Study
We report on measurements of the specific heat of the recently discovered
superconductor MgB in the temperature range between 3 and 220 K. Based on a
modified Debye-Einstein model, we have achieved a rather accurate account of
the lattice contribution to the specific heat, which allows us to separate the
electronic contribution from the total measured specific heat. From our result
for the electronic specific heat, we estimate the electron-phonon coupling
constant to be of the order of 2, significantly enhanced compared to
common weak-coupling values . Our data also indicate that the
electronic specific heat in the superconducting state of MgB can be
accounted for by a conventional, s-wave type BCS-model.Comment: 4 pages, 4 figure
Zurek-Kibble domain structures: The Dynamics of Spontaneous Vortex formation in Annular Josephson Tunnel Junctions
Phase transitions executed in a finite time show a domain structure with
defects, that has been argued by Zurek and Kibble to depend in a characteristic
way on the quench rate. In this letter we present an experiment to measure the
Zurek-Kibble scaling exponent sigma. Using symmetric and long Josephson Tunnel
Junctions, for which the predicted index is sigma = 0.25, we find sigma = 0.27
+/- 0.05. Further, there is agreement with the ZK prediction for the overall
normalisation.Comment: To be published in Phys. Rev. Lett
Electromagnetic waves in a Josephson junction in a thin film
We consider a one-dimensional Josephson junction in a superconducting film
with the thickness that is much less than the London penetration depth. We
treat an electromagnetic wave propagating along this tunnel contact. We show
that the electrodynamics of a Josephson junction in a thin film is nonlocal if
the wave length is less than the Pearl penetration depth. We find the
integro-differential equation determining the phase difference between the two
superconductors forming the tunnel contact. We use this equation to calculate
the dispersion relation for an electromagnetic wave propagating along the
Josephson junction. We find that the frequency of this wave is proportional to
the square root of the wave vector if the wave length is less than the Pearl
penetration depth.Comment: 12 pages, a figure is included as a uuencodeded postscript file,
ReVTe
Effect of hydrogen on ground state structures of small silicon clusters
We present results for ground state structures of small SiH (2 \leq
\emph{n} \leq 10) clusters using the Car-Parrinello molecular dynamics. In
particular, we focus on how the addition of a hydrogen atom affects the ground
state geometry, total energy and the first excited electronic level gap of an
Si cluster. We discuss the nature of bonding of hydrogen in these
clusters. We find that hydrogen bonds with two silicon atoms only in SiH,
SiH and SiH clusters, while in other clusters (i.e. SiH,
SiH, SiH, SiH, SiH and SiH) hydrogen is bonded
to only one silicon atom. Also in the case of a compact and closed silicon
cluster hydrogen bonds to the cluster from outside. We find that the first
excited electronic level gap of Si and SiH fluctuates as a function
of size and this may provide a first principles basis for the short-range
potential fluctuations in hydrogenated amorphous silicon. Our results show that
the addition of a single hydrogen can cause large changes in the electronic
structure of a silicon cluster, though the geometry is not much affected. Our
calculation of the lowest energy fragmentation products of SiH clusters
shows that hydrogen is easily removed from SiH clusters.Comment: one latex file named script.tex including table and figure caption.
Six postscript figure files. figure_1a.ps and figure_1b.ps are files
representing Fig. 1 in the main tex
First experimental evidence of one-dimensional plasma modes in superconducting thin wires
We have studied niobium superconducting thin wires deposited onto a
SrTiO substrate. By measuring the reflection coefficient of the wires,
resonances are observed in the superconducting state in the 130 MHz to 4 GHz
range. They are interpreted as standing wave resonances of one-dimensional
plasma modes propagating along the superconducting wire. The experimental
dispersion law, versus , presents a linear dependence over the
entire wave vector range. The modes are softened as the temperature increases
close the superconducting transition temperature. Very good agreement are
observed between our data and the dispersion relation predicted by Kulik and
Mooij and Sch\"on.Comment: Submitted to Physical review Letter
Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia
Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment
Testing the Kibble-Zurek Scenario with Annular Josephson Tunnel Junctions
In parallel with Kibble's description of the onset of phase transitions in
the early universe, Zurek has provided a simple picture for the onset of phase
transitions in condensed matter systems, strongly supported by agreement with
experiments in He3. In this letter we show how experiments with annular
Josephson tunnel Junctions can and do provide further support for this
scenario.Comment: Revised version with correct formula for the Swihart velocity. The
results are qualitatively the same as with the previous version but differ
quantitatively. 4 pages, RevTe
Recommended from our members
A dramatic isotope effect in the reaction of ClSiH with trimethylsilane-1-d: experimental evidence for intermediate complexes in silylene Si-H(D) insertion reactions
A kinetic isotope effect (kD/kH) of 7.4 has been found for the reaction of chlorosilylene with trimethysilane (Me3SiD vs Me3SiH). Such a value can be accounted for by theoretical modelling, but only if an internal rearrangement of the initially form complex is included in the mechanism. This provides the first concrete evidence for such complexes
- …
