217 research outputs found
Modeling reactivity to biological macromolecules with a deep multitask network
Most
small-molecule drug candidates fail before entering the market,
frequently because of unexpected toxicity. Often, toxicity is detected
only late in drug development, because many types of toxicities, especially
idiosyncratic adverse drug reactions (IADRs), are particularly hard
to predict and detect. Moreover, drug-induced liver injury (DILI)
is the most frequent reason drugs are withdrawn from the market and
causes 50% of acute liver failure cases in the United States. A common
mechanism often underlies many types of drug toxicities, including
both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes
into reactive metabolites, which then conjugate to sites in proteins
or DNA to form adducts. DNA adducts are often mutagenic and may alter
the reading and copying of genes and their regulatory elements, causing
gene dysregulation and even triggering cancer. Similarly, protein
adducts can disrupt their normal biological functions and induce harmful
immune responses. Unfortunately, reactive metabolites are not reliably
detected by experiments, and it is also expensive to test drug candidates
for potential to form DNA or protein adducts during the early stages
of drug development. In contrast, computational methods have the potential
to quickly screen for covalent binding potential, thereby flagging
problematic molecules and reducing the total number of necessary experiments.
Here, we train a deep convolution neural networkthe XenoSite
reactivity modelusing literature data to accurately predict
both sites and probability of reactivity for molecules with glutathione,
cyanide, protein, and DNA. On the site level, cross-validated predictions
had area under the curve (AUC) performances of 89.8% for DNA and 94.4%
for protein. Furthermore, the model separated molecules electrophilically
reactive with DNA and protein from nonreactive molecules with cross-validated
AUC performances of 78.7% and 79.8%, respectively. On both the site-
and molecule-level, the model’s performances significantly
outperformed reactivity indices derived from quantum simulations that
are reported in the literature. Moreover, we developed and applied
a selectivity score to assess preferential reactions with the macromolecules
as opposed to the common screening traps. For the entire data set
of 2803 molecules, this approach yielded totals of 257 (9.2%) and
227 (8.1%) molecules predicted to be reactive only with DNA and protein,
respectively, and hence those that would be missed by standard reactivity
screening experiments. Site of reactivity data is an underutilized
resource that can be used to not only predict if molecules are reactive,
but also show where they might be modified to reduce toxicity while
retaining efficacy. The XenoSite reactivity model is available at http://swami.wustl.edu/xenosite/p/reactivity
Development and validation of a deep learning model to quantify glomerulosclerosis in kidney biopsy specimens
Importance: A chronic shortage of donor kidneys is compounded by a high discard rate, and this rate is directly associated with biopsy specimen evaluation, which shows poor reproducibility among pathologists. A deep learning algorithm for measuring percent global glomerulosclerosis (an important predictor of outcome) on images of kidney biopsy specimens could enable pathologists to more reproducibly and accurately quantify percent global glomerulosclerosis, potentially saving organs that would have been discarded.
Objective: To compare the performances of pathologists with a deep learning model on quantification of percent global glomerulosclerosis in whole-slide images of donor kidney biopsy specimens, and to determine the potential benefit of a deep learning model on organ discard rates.
Design, Setting, and Participants: This prognostic study used whole-slide images acquired from 98 hematoxylin-eosin-stained frozen and 51 permanent donor biopsy specimen sections retrieved from 83 kidneys. Serial annotation by 3 board-certified pathologists served as ground truth for model training and for evaluation. Images of kidney biopsy specimens were obtained from the Washington University database (retrieved between June 2015 and June 2017). Cases were selected randomly from a database of more than 1000 cases to include biopsy specimens representing an equitable distribution within 0% to 5%, 6% to 10%, 11% to 15%, 16% to 20%, and more than 20% global glomerulosclerosis.
Main Outcomes and Measures: Correlation coefficient (r) and root-mean-square error (RMSE) with respect to annotations were computed for cross-validated model predictions and on-call pathologists\u27 estimates of percent global glomerulosclerosis when using individual and pooled slide results. Data were analyzed from March 2018 to August 2020.
Results: The cross-validated model results of section images retrieved from 83 donor kidneys showed higher correlation with annotations (r = 0.916; 95% CI, 0.886-0.939) than on-call pathologists (r = 0.884; 95% CI, 0.825-0.923) that was enhanced when pooling glomeruli counts from multiple levels (r = 0.933; 95% CI, 0.898-0.956). Model prediction error for single levels (RMSE, 5.631; 95% CI, 4.735-6.517) was 14% lower than on-call pathologists (RMSE, 6.523; 95% CI, 5.191-7.783), improving to 22% with multiple levels (RMSE, 5.094; 95% CI, 3.972-6.301). The model decreased the likelihood of unnecessary organ discard by 37% compared with pathologists.
Conclusions and Relevance: The findings of this prognostic study suggest that this deep learning model provided a scalable and robust method to quantify percent global glomerulosclerosis in whole-slide images of donor kidneys. The model performance improved by analyzing multiple levels of a section, surpassing the capacity of pathologists in the time-sensitive setting of examining donor biopsy specimens. The results indicate the potential of a deep learning model to prevent erroneous donor organ discard
Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort
Drug-drug interactions account for up to 30% of adverse drug reactions. Increasing prevalence of electronic health records (EHRs) offers a unique opportunity to build machine learning algorithms to identify drug-drug interactions that drive adverse events. In this study, we investigated hospitalizations\u27 data to study drug interactions with non-steroidal anti-inflammatory drugs (NSAIDS) that result in drug-induced liver injury (DILI). We propose a logistic regression based machine learning algorithm that unearths several known interactions from an EHR dataset of about 400,000 hospitalization. Our proposed modeling framework is successful in detecting 87.5% of the positive controls, which are defined by drugs known to interact with diclofenac causing an increased risk of DILI, and correctly ranks aggregate risk of DILI for eight commonly prescribed NSAIDs. We found that our modeling framework is particularly successful in inferring associations of drug-drug interactions from relatively small EHR datasets. Furthermore, we have identified a novel and potentially hepatotoxic interaction that might occur during concomitant use of meloxicam and esomeprazole, which are commonly prescribed together to allay NSAID-induced gastrointestinal (GI) bleeding. Empirically, we validate our approach against prior methods for signal detection on EHR datasets, in which our proposed approach outperforms all the compared methods across most metrics, such as area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC)
Discovery of novel reductive elimination pathway for 10-hydroxywarfarin
Coumadin (R/S-warfarin) anticoagulant therapy is highly efficacious in preventing the formation of blood clots; however, significant inter-individual variations in response risks over or under dosing resulting in adverse bleeding events or ineffective therapy, respectively. Levels of pharmacologically active forms of the drug and metabolites depend on a diversity of metabolic pathways. Cytochromes P450 play a major role in oxidizing R- and S-warfarin to 6-, 7-, 8-, 10-, and 4\u27-hydroxywarfarin, and warfarin alcohols form through a minor metabolic pathway involving reduction at the C11 position. We hypothesized that due to structural similarities with warfarin, hydroxywarfarins undergo reduction, possibly impacting their pharmacological activity and elimination. We modeled reduction reactions and carried out experimental steady-state reactions with human liver cytosol for conversion o
Deep learning quantification of percent steatosis in donor liver biopsy frozen sections
BACKGROUND: Pathologist evaluation of donor liver biopsies provides information for accepting or discarding potential donor livers. Due to the urgent nature of the decision process, this is regularly performed using frozen sectioning at the time of biopsy. The percent steatosis in a donor liver biopsy correlates with transplant outcome, however there is significant inter- and intra-observer variability in quantifying steatosis, compounded by frozen section artifact. We hypothesized that a deep learning model could identify and quantify steatosis in donor liver biopsies.
METHODS: We developed a deep learning convolutional neural network that generates a steatosis probability map from an input whole slide image (WSI) of a hematoxylin and eosin-stained frozen section, and subsequently calculates the percent steatosis. Ninety-six WSI of frozen donor liver sections from our transplant pathology service were annotated for steatosis and used to train (n = 30 WSI) and test (n = 66 WSI) the deep learning model.
FINDINGS: The model had good correlation and agreement with the annotation in both the training set (r of 0.88, intraclass correlation coefficient [ICC] of 0.88) and novel input test sets (r = 0.85 and ICC=0.85). These measurements were superior to the estimates of the on-service pathologist at the time of initial evaluation (r = 0.52 and ICC=0.52 for the training set, and r = 0.74 and ICC=0.72 for the test set).
INTERPRETATION: Use of this deep learning algorithm could be incorporated into routine pathology workflows for fast, accurate, and reproducible donor liver evaluation.
FUNDING: Mid-America Transplant Society
Bioactivation of isoxazole-containing bromodomain and extra-terminal domain (BET) inhibitors
The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD\u27s bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads
OrChem - An open source chemistry search engine for Oracle®
<p>Abstract</p> <p>Background</p> <p>Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world.</p> <p>Results</p> <p>Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets.</p> <p>Availability</p> <p>OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via <url>http://orchem.sourceforge.net</url>.</p
The gut microbiota of people with asthma influences lung inflammation in gnotobiotic mice
The gut microbiota in early childhood is linked to asthma risk, but may continue to affect older patients with asthma. Here, we profile the gut microbiota of 38 children (19 asthma, median age 8) and 57 adults (17 asthma, median age 28) by 16S rRNA sequencing and find individuals with asthma harbored compositional differences from healthy controls in both adults and children. We develop a model to aid the design of mechanistic experiments in gnotobiotic mice and show enterotoxigeni
Performance evaluation of flexible manufacturing systems under uncertain and dynamic situations
The present era demands the efficient modelling of any manufacturing system to enable it to cope with unforeseen situations on the shop floor. One of the complex issues affecting the performance of manufacturing systems is the scheduling of part types. In this paper, the authors have attempted to overcome the impact of uncertainties such as machine breakdowns, deadlocks, etc., by inserting slack that can absorb these disruptions without affecting the other scheduled activities. The impact of the flexibilities in this scenario is also investigated. The objective functions have been formulated in such a manner that a better trade-off between the uncertainties and flexibilities can be established. Consideration of automated guided vehicles (AGVs) in this scenario helps in the loading or unloading of part types in a better manner. In the recent past, a comprehensive literature survey revealed the supremacy of random search algorithms in evaluating the performance of these types of dynamic manufacturing system. The authors have used a metaheuristic known as the quick convergence simulated annealing (QCSA) algorithm, and employed it to resolve the dynamic manufacturing scenario. The metaheuristic encompasses a Cauchy distribution function as a probability function that helps in escaping the local minima in a better manner. Various machine breakdown scenarios are generated. A ‘heuristic gap’ is measured, and it indicates the effectiveness of the performance of the proposed methodology with the varying problem complexities. Statistical validation is also carried out, which helps in authenticating the effectiveness of the proposed approach. The efficacy of the proposed approach is also compared with deterministic priority rules
Interpreting linear support vector machine models with heat map molecule coloring
<p>Abstract</p> <p>Background</p> <p>Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity.</p> <p>Results</p> <p>We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor.</p> <p>Conclusions</p> <p>In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor.</p
- …