4,632 research outputs found
Recommended from our members
Why are nitrogen‐fixing trees rare at higher compared to lower latitudes?
Symbiotic nitrogen (N) fixation provides a dominant source of new N to the terrestrial biosphere, yet in many cases the abundance of N‐fixing trees appears paradoxical. N‐fixing trees, which should be favored when N is limiting, are rare in higher latitude forests where N limitation is common, but are abundant in many lower latitude forests where N limitation is rare. Here, we develop a graphical and mathematical model to resolve the paradox. We use the model to demonstrate that N fixation is not necessarily cost effective under all degrees of N limitation, as intuition suggests. Rather, N fixation is only cost effective when N limitation is sufficiently severe. This general finding, specific versions of which have also emerged from other models, would explain sustained moderate N limitation because N‐fixing trees would either turn N fixation off or be outcompeted under moderate N limitation. From this finding, four general hypothesis classes emerge to resolve the apparent paradox of N limitation and N‐fixing tree abundance across latitude. The first hypothesis is that N limitation is less common at higher latitudes. This hypothesis contradicts prevailing evidence, so is unlikely, but the following three hypotheses all seem likely. The second hypothesis, which is new, is that even if N limitation is more common at higher latitudes, more severe N limitation might be more common at lower latitudes because of the capacity for higher N demand. Third, N fixation might be cost effective under milder N limitation at lower latitudes but only under more severe N limitation at higher latitudes. This third hypothesis class generalizes previous hypotheses and suggests new specific hypotheses. For example, greater trade‐offs between N fixation and N use efficiency, soil N uptake, or plant turnover at higher compared to lower latitudes would make N fixation cost effective only under more severe N limitation at higher latitudes. Fourth, N‐fixing trees might adjust N fixation more at lower than at higher latitudes. This framework provides new hypotheses to explain the latitudinal abundance distribution of N‐fixing trees, and also provides a new way to visualize them. Therefore, it can help explain the seemingly paradoxical persistence of N limitation in many higher latitude forests
The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles
Copyright @ 2008 American Society for Microbiology.The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.The University of Hong Kong and the French Ministry of Health
Resection of phaeochromocytoma extending into the right atrium in a patient with multiple endocrine neoplasia type 2A
We report the first case of successful surgical resection of a malignant phaeochromocytoma with tumour extension into vena cava and right atrium in a patient with multiple endocrine neoplasia type 2A. A 21-year-old woman with genetic confirmation of multiple endocrine neoplasia type 2A syndrome was diagnosed with a very rare case of malignant phaeochromocytoma with tumour thrombus extension into vena cava and right atrium causing Budd-Chiari syndrome. It posed a challenge to the surgeons with regard to complete tumour resection and vascular control. Reviewing the limited literature, surgical resection by means of cardiopulmonary bypass with hypothermic circulatory arrest has been reported with success in phaeochromocytoma with advance vascular involvement. Adopting this approach, adrenalectomy with complete thrombus excision by inferior vena cava exploration and right atriotomy were performed successfully by a multidisciplinary team.published_or_final_versio
Granulin-epithelin precursor interacts with 78-kDa glucose-regulated protein in hepatocellular carcinoma
published_or_final_versio
Radio relics in cosmological simulations
Radio relics have been discovered in many galaxy clusters. They are believed
to trace shock fronts induced by cluster mergers. Cosmological simulations
allow us to study merger shocks in detail since the intra-cluster medium is
heated by shock dissipation. Using high resolution cosmological simulations,
identifying shock fronts and applying a parametric model for the radio emission
allows us to simulate the formation of radio relics. We analyze a simulated
shock front in detail. We find a rather broad Mach number distribution. The
Mach number affects strongly the number density of relativistic electrons in
the downstream area, hence, the radio luminosity varies significantly across
the shock surface. The abundance of radio relics can be modeled with the help
of the radio power probability distribution which aims at predicting radio
relic number counts. Since the actual electron acceleration efficiency is not
known, predictions for the number counts need to be normalized by the observed
number of radio relics. For the characteristics of upcoming low frequency
surveys we find that about thousand relics are awaiting discovery.Comment: 10 pages, 4 figures, Invited talk at the conference "Diffuse
Relativistic Plasmas", Bangalore, 1-4 March 2011; in press in special issue
of Journal of Astrophysics and Astronom
A simplified model of surface burnishing and friction in repeated make-up process of premium tubular connections
Enhanced IL-6/IL-6R Signaling Promotes Growth and Malignant Properties in EBV-Infected Premalignant and Cancerous Nasopharyngeal Epithelial Cells
Nasopharyngeal carcinoma (NPC) is etiologically associated with Epstein-Barr virus (EBV) infection. However, the exact role of EBV in NPC pathogenesis remains elusive. Activation of signal transducer and activator of transcription 3 (STAT3) is common in human cancers including NPC and plays an important role in the pathogenesis and progression of human cancers. Interleukin-6 (IL-6), a major inflammatory cytokine, is a potent activator of STAT3. In this study, we report that EBV-infected immortalized nasopharyngeal epithelial (NPE) cells often acquire an enhanced response to IL-6-induced STAT3 activation to promote their growth and invasive properties. Interestingly, this enhanced IL-6/STAT3 response was mediated by overexpression of IL-6 receptor (IL-6R). Furthermore, IL-6R overexpression enhanced IL-6-induced STAT3 activation in uninfected immortalized NPE cells in vitro, and promoted growth and tumorigenicity of EBV-positive NPC cell line (C666-1) in vivo. Moreover, it is shown for the first time that IL-6R was overexpressed in clinical specimens of NPC. IL-6 expression could also be strongly detected in the stromal cells of NPC and a higher circulating level of IL-6 was found in the sera of advance-staged NPC patients compared to the control subjects. Therefore, IL-6R overexpression, coupled with enhanced IL-6/STAT3 signaling may facilitate the malignant transformation of EBV-infected premalignant NPE cells into cancer cells, and enhance malignant properties of NPC cells. © 2013 Zhang et al.published_or_final_versio
Persistence of magnetic field driven by relativistic electrons in a plasma
The onset and evolution of magnetic fields in laboratory and astrophysical
plasmas is determined by several mechanisms, including instabilities, dynamo
effects and ultra-high energy particle flows through gas, plasma and
interstellar-media. These processes are relevant over a wide range of
conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion
in stars. The disparate temporal and spatial scales where each operates can be
reconciled by scaling parameters that enable to recreate astrophysical
conditions in the laboratory. Here we unveil a new mechanism by which the flow
of ultra-energetic particles can strongly magnetize the boundary between the
plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro
Tesla in astrophysical conditions). The physics is observed from the first
time-resolved large scale magnetic field measurements obtained in a laser
wakefield accelerator. Particle-in-cell simulations capturing the global plasma
and field dynamics over the full plasma length confirm the experimental
measurements. These results open new paths for the exploration and modelling of
ultra high energy particle driven magnetic field generation in the laboratory
Neonatal-onset multisystem inflammatory disease responsive to interleukin-1 beta inhibition
BACKGROUND:Neonatal-onset multisystem inflammatory disease is characterized by fever, urticarial rash, aseptic meningitis, deforming arthropathy, hearing loss, and mental retardation. Many patients have mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene, encoding cryopyrin, a protein that regulates inflammation.METHODS:We selected 18 patients with neonatal-onset multisystem inflammatory disease (12 with identifiable CIAS1 mutations) to receive anakinra, an interleukin-1-receptor antagonist (1 to 2 mg per kilogram of body weight per day subcutaneously). In 11 patients, anakinra was withdrawn at three months until a flare occurred. The primary end points included changes in scores in a daily diary of symptoms, serum levels of amyloid A and C-reactive protein, and the erythrocyte sedimentation rate from baseline to month 3 and from month 3 until a disease flare.RESULTS:All 18 patients had a rapid response to anakinra, with disappearance of rash. Diary scores improved (P<0.001) and serum amyloid A (from a median of 174 mg to 8 mg per liter), C-reactive protein (from a median of 5.29 mg to 0.34 mg per deciliter), and the erythrocyte sedimentation rate decreased at month 3 (all P<0.001), and remained low at month 6. Magnetic resonance imaging showed improvement in cochlear and leptomeningeal lesions as compared with baseline. Withdrawal of anakinra uniformly resulted in relapse within days; retreatment led to rapid improvement. There were no drug-related serious adverse events.CONCLUSIONS:Daily injections of anakinra markedly improved clinical and laboratory manifestations in patients with neonatal-onset multisystem inflammatory disease, with or without CIAS1 mutations
Patient morbidity and management patterns of community-based primary health care services in Hong Kong
published_or_final_versio
- …
